Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Transfusion ; 54(2): 353-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23772685

RESUMEN

BACKGROUND: We investigated the ability of clinical-grade enriched human regulatory T cells (Treg) to attenuate experimental xenogeneic graft-versus-host disease (GVHD) induced by peripheral blood mononuclear cells (PBMNCs; autologous to Treg) infusion in NSG mice, as well as verified their inability to induce xenogeneic GVHD when infused alone. STUDY DESIGN AND METHODS: Human Treg were isolated from peripheral blood apheresis products with a cell separation system (CliniMACS, Miltenyi Biotec GmbH) using a two-step procedure (simultaneous CD8 and CD19 depletion followed by CD25-positive selection) in six independent experiments with six different healthy volunteer donors. Sublethally (2.5 Gy) irradiated NSG mice were given 2 × 10(6) cytapheresis (PBMNC) product cells intravenously (IV) without (PBMNC group) or with 1 × 10(6) Treg (PBMNC + Treg group), while other NSG mice received 2 × 10(6) enriched Treg alone (also in IV; Treg group). RESULTS: The first five procedures were successful at obtaining a relatively pure Treg population (defined as >50%), while the sixth procedure, due to a technical problem, was not (Treg purity, 42%). Treg cotransfusion significantly delayed death from xenogeneic GVHD in the first five experiments, (p < 0.0001) but not in the sixth experiment. Importantly, none of the mice given enriched Treg alone (Treg group) experienced clinical signs of GVHD, while, interestingly, the CD4+ cells found in these mice 26 days after transplantation were mainly conventional T cells (median CD25+FoxP3+ cells among human CD4+ total cells were only 2.1, 3.1, and 12.2% in spleen, marrow, and blood, respectively). CONCLUSIONS: Infusion of clinical-grade enriched Treg delayed the occurrence of xenogeneic GVHD without inducing toxicity in this murine model.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Animales , Eliminación de Componentes Sanguíneos/métodos , Modelos Animales de Enfermedad , Humanos , Inmunofenotipificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factores de Tiempo , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA