Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(10): 991-995, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35637074

RESUMEN

Polyploidization and polyploidy reversal (depolyploidization) are crucial pathways to conversely alter genomic contents in organisms. Understanding the mechanisms switching between polyploidization and polyploidy reversal should broaden our knowledge of the generation of pathological polyploidy and pave a new path to prevent related diseases.


Asunto(s)
Mitosis , Poliploidía , Humanos
2.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38183795

RESUMEN

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Relojes Circadianos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Carcinoma Hepatocelular/patología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Regulación de la Expresión Génica , Proteínas de Andamiaje Homer/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados , Uridina Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo
3.
Mol Psychiatry ; 27(8): 3343-3354, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491410

RESUMEN

Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.


Asunto(s)
Trastorno Autístico , Ratones , Animales , Trastorno Autístico/genética , Mesonefro , Saco Vitelino/fisiología , Gónadas , Epigénesis Genética/genética , Modelos Animales de Enfermedad
4.
Medicina (Kaunas) ; 59(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36676731

RESUMEN

This cross-sectional observation study investigated the vitamin D (VD) status in Taiwanese pregnant women and the effects of VD supplementation and macronutrient intake on serum 25-hydroxy-vitamin D (25[OH]D) level. Data on VD intake, daily sunlight exposure, and carbohydrate intake were obtained from 125 pregnant women at 30−37 weeks' gestation. Serum 25[OH]D level was measured before delivery in all enrolled women; and the mean 25(OH)D level was 43 nmol/L or 17.2 ng/mL. The 25(OH)D level was significantly correlated with total VD intake of pregnant women (r = 0.239; p = 0.007). The severe VD deficiency group (n = 16; mean of 25(OH)D level = 8.5 ng/mL) had significantly lower total VD intake and supplementation than the groups with VD deficiency (n = 69), insufficiency (n = 32), and sufficiency (n = 8). Those with ≥400 IU/day total VD intake (including VD from food and supplementation) had significantly higher 25(OH)D concentration than those with <400 IU/day total VD intake. Those with 400 IU/day VD supplementation could significantly increase serum 25(OH)D concentrations for pregnant women. Among 85 pregnant women with carbohydrate intake of ≥300 g/day, serum 25(OH)D levels were negatively correlated with carbohydrate intake (p = 0.031). In conclusion, VD deficiency was highly prevalent in Taiwanese pregnant women. VD supplementation was the most effective method for increasing 25(OH)D concentration in pregnant women. Higher carbohydrate intake might reduce 25(OH)D levels.


Asunto(s)
Mujeres Embarazadas , Deficiencia de Vitamina D , Femenino , Humanos , Embarazo , Estudios Transversales , Suplementos Dietéticos , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/complicaciones , Vitaminas , Carbohidratos
5.
Pediatr Nephrol ; 37(10): 2471-2478, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35352189

RESUMEN

BACKGROUND: Vitamin D supplements are readily available as over-the-counter preparations. However, although rare, cases of vitamin D overdose still occur and are associated with nephrocalcinosis and life-threatening hypercalcemia. Errors in manufacturing of nutritional supplements may be a cause of vitamin D intoxication in children. This study aimed to identify factors associated with vitamin D overdose-related nephrocalcinosis in children due to manufacturing errors in supplements. METHODS: This retrospective study reviewed medical charts of pediatric patients with non-registered supplement-related vitamin D overdose at a tertiary referral hospital between 2006 and 2011. Clinical and laboratory characteristics of patients with or without nephrocalcinosis were evaluated. Receiver operating characteristics curve and area under the receiver operating characteristics curve were used to determine the most predictive value of each characteristic. RESULTS: A total of 44 patients (males: 29; age: 7-62 months) were included. Age ≤ 16.5 months, body weight ≤ 10.25 kg, body height ≤ 78.5 cm, body surface area (BSA) ≤ 0.475 m2, 25-hydroxyvitamin D3 ≥ 143 ng/mL, and calcium ≥ 10.65 mg/dL were predictive of developing nephrocalcinosis with a sensitivity and specificity of > 60%. Univariant analysis revealed that BSA was the most significant anthropometric prognostic factor (odds ratio: 12.09; 95% confidence interval: 2.61-55.72; P = 0.001). CONCLUSIONS: Children with smaller BSAs were more vulnerable to high-dose vitamin D3-related nephrocalcinosis. Physicians and parents should be aware of the potential adverse effects of vitamin D overdose in children. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hipercalcemia , Nefrocalcinosis , Niño , Preescolar , Colecalciferol/efectos adversos , Humanos , Hipercalcemia/inducido químicamente , Lactante , Masculino , Nefrocalcinosis/inducido químicamente , Estudios Retrospectivos , Vitamina D/efectos adversos , Vitaminas/efectos adversos
6.
J Cell Physiol ; 236(3): 2023-2035, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32730662

RESUMEN

The downregulation of melatonin receptor 1A (MTNR1A) is associated with a range of pathological conditions, including membranous nephropathy. Knowledge of the mechanism underlying MTNR1A expression has been limited to the transcriptional regulation level. Here, RNA interference screening in human kidney cells revealed that heterogeneous nuclear ribonucleoprotein L (hnRNPL) upregulated MTNR1A RNA post-transcriptionally. hnRNPL knockdown or overexpression led to increased or decreased levels of cyclic adenosine monophosphate-responsive element-binding protein phosphorylation, respectively. Molecular studies showed that cytoplasmic hnRNPL exerts a stabilizing effect on the MTNR1A transcript through CA-repeat elements in its coding region. Further studies revealed that the interaction between hnRNPL and MTNR1A serves to protect MNTR1A RNA degradation by the exosome component 10 protein. MTNR1A, but not hnRNPL, displays a diurnal rhythm in mouse kidneys. Enhanced levels of MTNR1A recorded at midnight correlated with robust binding activity between cytoplasmic hnRNPL and the MTNR1A transcript. Both hnRNPL and MTNR1A were decreased in the cytoplasm of tubular epithelial cells from experimental membranous nephropathy kidneys, supporting their clinical relevance. Collectively, our data identified cytoplasmic hnRNPL as a novel player in the upregulation of MTNR1A expression in renal tubular epithelial cells, and as a potential therapeutic target.


Asunto(s)
Citoplasma/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Túbulos Renales/metabolismo , Receptor de Melatonina MT1/genética , Animales , Línea Celular , Ritmo Circadiano/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/patología , Humanos , Túbulos Renales/patología , Ratones Endogámicos BALB C , Modelos Biológicos , Sistemas de Lectura Abierta/genética , Fosforilación , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Regulación hacia Arriba/genética
7.
J Cell Physiol ; 236(9): 6706-6725, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33598947

RESUMEN

Testosterone is produced by Leydig cells (LCs) and undergoes diurnal changes in serum levels in rats, mice, and humans, but little is known in goats. The present study revealed that goat serum testosterone levels displayed diurnal rhythmic changes (peak time at ZT11.2). Immunohistochemical staining showed that BMAL1, a circadian clock protein, is highly expressed in goat LCs. ELISA revealed that both hCG (0-5 IU/ml) and 22R-OH-cholesterol (0-30 µM) addition stimulated testosterone synthesis in primary goat LCs in a dose-dependent manner. Treating goat LCs with hCG (5 IU/ml) significantly increased intracellular cAMP levels. Additionally, real-time quantitative polymerase chain reaction (PCR) analysis revealed that the circadian clock (BMAL1, PER1, PER2, DBP, and NR1D1) and steroidogenesis-related genes (SF1, NUR77, StAR, HSD3B2, CYP17A1, CYP11A1, and HSD17B3) showed rhythmic expression patterns in goat LCs following dexamethasone synchronization. Several Bmal1-Luc circadian oscillations were clearly observed in dexamethasone-treated goat LCs transfected with the pLV6-Bmal1-Luc plasmid. BMAL1 knockdown significantly downregulated mRNA levels of PER2, NR1D1, DBP, StAR, HSD3B2, SF1, NUR77, and GATA4, and dramatically decreased StAR and HSD3B2 protein levels and testosterone production. In contrast, BMAL1 overexpression significantly increased the mRNA and protein expression levels of StAR and HSD17B3 and enhanced testosterone production. Reporter assays revealed that goat BMAL1, or in combination with mouse CLOCK, activated goat HSD17B3 transcription in vitro. These data indicate that BMAL1 contributes to testosterone production by regulating transcription of steroidogenesis-related genes in goat LCs, providing a basis for further exploring the underlying mechanism by which the circadian clock regulates ruminant reproductive capability.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica , Cabras/genética , Células Intersticiales del Testículo/metabolismo , Fosfoproteínas/genética , Testosterona/biosíntesis , Transcripción Genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Relojes Circadianos/efectos de los fármacos , Dexametasona/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Cabras/sangre , Humanos , Hidroxicolesteroles/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Masculino , Modelos Biológicos , Testosterona/sangre , Transcripción Genética/efectos de los fármacos
8.
Am J Physiol Endocrinol Metab ; 320(4): E747-E759, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554778

RESUMEN

Prostaglandin G/H synthase 2 (PTGS2) is a rate-limiting enzyme in prostaglandin synthesis. The present study assessed the role of the uterine circadian clock on Ptgs2 transcription in response to steroid hormones during early pregnancy. We demonstrated that the core clock genes (Bmal1, Per2, Nr1d1, and Dbp), Vegf, and Ptgs2, and their encoded proteins, have rhythmic expression in the mouse uterus from days 3.5 to 4.5 (D3.5-4.5) of pregnancy. Progesterone (P4) treatment of cultured uterus endometrial stromal cells (UESCs) isolated from mPer2Luciferase reporter gene knock-in mice on D4 induced a phase shift in PER2::LUCIFERASE oscillations. This P4-induced phase shift of PER2::LUCIFERASE oscillations was significantly attenuated by the P4 antagonist RU486. Additionally, the amplitude of PER2::LUCIFERASE oscillations was increased by estradiol (E2) treatment in the presence of P4. Consistently, the mRNA levels of clock genes (Bmal1 and Per2), Vegf, and Ptgs2 were markedly increased by E2 treatment of UESCs in the presence of P4. Treatment with E2 also promoted prostaglandin E2 (PGE2) synthesis by UESCs. Depletion of Bmal1 in UESCs by small-interfering RNA (siRNA) decreased the transcript levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2 compared with nonsilencing siRNA treatment. Bmal1 knockdown also inhibited PGE2 synthesis. Moreover, the mRNA expression levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2, and their respective proteins were significantly decreased in the uterus of Bmal1-/- mice. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.NEW & NOTEWORTHY Rhythmic expression of Bmal1 and Ptgs2 was observed in the uterus isolated from D3.5-4.5 of pregnant mice. E2 increased the expression of Bmal1 and Ptg2 in UESCs isolated from mice on D4. The expression of Ptgs2 was significantly decreased in Bmal1-siRNA treated UESCs. Bmal1 knockdown also inhibited PGE2 synthesis. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Ciclooxigenasa 2/genética , Dinoprostona/biosíntesis , Estradiol/sangre , Factores de Transcripción ARNTL/genética , Animales , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Estradiol/farmacología , Femenino , Edad Gestacional , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Progesterona/farmacología , Activación Transcripcional/efectos de los fármacos , Útero/efectos de los fármacos , Útero/metabolismo
9.
BMC Med ; 19(1): 255, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34593004

RESUMEN

BACKGROUND: This study aims to identify the causative strain of SARS-CoV-2 in a cluster of vaccine breakthroughs. Vaccine breakthrough by a highly transmissible SARS-CoV-2 strain is a risk to global public health. METHODS: Nasopharyngeal swabs from suspected vaccine breakthrough cases were tested for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) by qPCR (quantitative polymerase chain reaction) for Wuhan-Hu1 and alpha variant. Positive samples were then sequenced by Swift Normalase Amplicon Panels to determine the causal variant. GATK (genome analysis toolkit) variants were filtered with allele fraction ≥80 and min read depth 30x. RESULTS: Viral sequencing revealed an infection cluster of 6 vaccinated patients infected with the delta (B.1.617.2) SARS-CoV-2 variant. With no history of vaccine breakthrough, this suggests the delta variant may possess immune evasion in patients that received the Pfizer BNT162b2, Moderna mRNA-1273, and Covaxin BBV152. CONCLUSIONS: Delta variant may pose the highest risk out of any currently circulating SARS-CoV-2 variants, with previously described increased transmissibility over alpha variant and now, possible vaccine breakthrough. FUNDING: Parts of this work was supported by the National Institute of Allergy and Infectious Diseases (1U19AI144297) and Baylor College of Medicine internal funding.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Evasión Inmune
10.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
12.
J Food Saf ; 41(6): e12932, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34898751

RESUMEN

COVID-19 has brought speculations on potential transmission routes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the pandemic. It is reported that the main route of virus transmission to be person-to-person by respiratory droplets; however, people have raised concerns on the possible transmission of SARS-CoV-2 to humans via food and packaging and its potential effects on food safety. This review discusses food safety issues in the COVID-19 pandemic and reveals its possible transmission in cold-chain food. The first outbreak of COVID-19 in late 2019 was associated with a seafood market in Wuhan, China, while the second outbreak of COVID-19 in June 2020 was also related to a seafood market in Beijing, China. As of 2020, several frozen seafood products linked with SARS-CoV-2 have been reported in China. According to the current survey and scientific studies, the risk of infection by SARS-CoV-2 from cold-chain food, food products, and food packaging is thought to be very low. However, studies on food cold chain contamination have shown that SARS-CoV-2 remained highly stable under refrigerated (4°C) and even in freezing conditions (-10 to -80°C). Since one mode of SARS-CoV-2 transmission appears to be touching contaminated surfaces, it is important to clean and sanitize food contact surfaces properly. Understanding food safety hazard risks is essential to avoid potential negative health effects and SARS-CoV-2 transmission in the food supply chain during the COVID-19 pandemic.

13.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
14.
J Biomed Sci ; 27(1): 52, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295602

RESUMEN

BACKGROUND: Alveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels. Genetic susceptibility or hyperoxic stress to perturb this complicated process can cause abnormal enlargement of alveoli and lead to bronchopulmonary dysplasia (BPD)-associated emphysema. Platelet-derived growth factor receptor α (PDGFRα) signaling is crucial for alveolar myofibroblast (MYF) proliferation and its deficiency is associated with risk of BPD, but posttranscriptional mechanisms regulating PDGFRα synthesis during lung development remain largely unexplored. Cytoplasmic polyadenylation element-binding protein 2 (CPEB2) is a sequence-specific RNA-binding protein and translational regulator. Because CPEB2-knockout (KO) mice showed emphysematous phenotypes, we investigated how CPEB2-controlled translation affects pulmonary development and function. METHODS: Respiratory and pulmonary functions were measured by whole-body and invasive plethysmography. Histological staining and immunohistochemistry were used to analyze morphology, proliferation, apoptosis and cell densities from postnatal to adult lungs. Western blotting, RNA-immunoprecipitation, reporter assay, primary MYF culture and ectopic expression rescue were performed to demonstrate the role of CPEB2 in PDGFRα mRNA translation and MYF proliferation. RESULTS: Adult CPEB2-KO mice showed emphysema-like dysfunction. The alveolar structure in CPEB2-deficient lungs appeared normal at birth but became simplified through the alveolar stage of lung development. In CPEB2-null mice, we found reduced proliferation of MYF progenitors during alveolarization, abnormal deposition of elastin and failure of alveolar septum formation, thereby leading to enlarged pulmonary alveoli. We identified that CPEB2 promoted PDGFRα mRNA translation in MYF progenitors and this positive regulation could be disrupted by H2O2, a hyperoxia-mimetic treatment. Moreover, decreased proliferating ability in KO MYFs due to insufficient PDGFRα expression was rescued by ectopic expression of CPEB2, suggesting an important role of CPEB2 in upregulating PDGFRα signaling for pulmonary alveologenesis. CONCLUSIONS: CPEB2-controlled translation, in part through promoting PDGFRα expression, is indispensable for lung development and function. Since defective pulmonary PDGFR signaling is a key feature of human BPD, CPEB2 may be a risk factor for BPD.


Asunto(s)
Proliferación Celular , Miofibroblastos/fisiología , Factor de Crecimiento Derivado de Plaquetas/genética , Biosíntesis de Proteínas , Alveolos Pulmonares/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Animales , Ratones , Ratones Noqueados , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
15.
BMC Biol ; 16(1): 54, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776407

RESUMEN

BACKGROUND: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. CONCLUSIONS: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.


Asunto(s)
Evolución Molecular , Control Biológico de Vectores , Avispas/clasificación , Avispas/genética , Animales , Genómica , Mariposas Nocturnas/parasitología , Filogenia , Avispas/patogenicidad , Secuenciación Completa del Genoma/métodos
16.
Int J Mol Sci ; 20(2)2019 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-30642126

RESUMEN

Industrialized society-caused dysregular human behaviors and activities such as overworking, excessive dietary intake, and sleep deprivation lead to perturbations in the metabolism and the development of metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide, affects around 30% and 25% of people in Western and Asian countries, respectively, which leads to numerous medical costs annually. Insulin resistance is the major hallmark of NAFLD and is crucial in the pathogenesis and for the progression from NAFLD to non-alcoholic steatohepatitis (NASH). Excessive dietary intake of saturated fats and carbohydrate-enriched foods contributes to both insulin resistance and NAFLD. Once NAFLD is established, insulin resistance can promote the progression to the more severe state of liver endangerment like NASH. Here, we review current and potential studies for understanding the complexity between insulin-regulated glycolytic and lipogenic homeostasis and the underlying causes of NAFLD. We discuss how disruption of the insulin signal is associated with various metabolic disorders of glucoses and lipids that constitute both the metabolic syndrome and NAFLD.


Asunto(s)
Glucosa/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Progresión de la Enfermedad , Glucólisis , Homeostasis , Humanos , Lipogénesis , Enfermedad del Hígado Graso no Alcohólico/epidemiología
17.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463532

RESUMEN

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Asunto(s)
Genoma , Heterópteros/genética , Heterópteros/fisiología , Proteínas de Insectos/genética , Adaptación Fisiológica , Animales , Evolución Molecular , Genómica , Heterópteros/clasificación , Fenotipo , Filogenia
18.
Mol Biol Evol ; 34(8): 1838-1862, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460028

RESUMEN

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.


Asunto(s)
Artrópodos/genética , Receptores Odorantes/genética , Animales , Células Quimiorreceptoras/fisiología , Copépodos/genética , Crustáceos/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Genoma/genética , Insectos/genética , Familia de Multigenes/genética , Filogenia
19.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29634279

RESUMEN

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Sedimentos Geológicos , América del Norte , Pruebas de Toxicidad
20.
BMC Biol ; 15(1): 62, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28756775

RESUMEN

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma , Arañas/genética , Animales , Femenino , Masculino , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA