Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 16(9)2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27598165

RESUMEN

This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR) linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an "MR reader" stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs) and analog-to-digital converters (ADCs). The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR) ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB) over the input range of 0.5-2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-micron complementary metal oxide semiconductor (CMOS) technology for verification with a chip size of 6.61 mm², while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL) is -0.79-0.95 LSB while the differential non-linearity (DNL) is -0.68-0.72 LSB. The effective number of bits (ENOB) of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement measurement error is within ±15 µm for a measuring range of 10 mm.

2.
Neuroimage ; 52(2): 562-70, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20362680

RESUMEN

The present study reported the development of a novel functional photoacoustic microscopy (fPAM) system for investigating hemodynamic changes in rat cortical vessels associated with electrical forepaw stimulation. Imaging of blood optical absorption by fPAM at multiple appropriately-selected and distinct wavelengths can be used to probe changes in total hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) and hemoglobin oxygen saturation (SO(2)). Changes in CBV were measured by images acquired at a wavelength of 570nm (lambda(570)), an isosbestic point of the molar extinction spectra of oxy- and deoxy-hemoglobin, whereas SO(2) changes were sensed by pixel-wise normalization of images acquired at lambda(560) or lambda(600) to those at lambda(570). We demonstrated the capacity of the fPAM system to image and quantify significant contralateral changes in both SO(2) and CBV driven by electrical forepaw stimulation. The fPAM system complements existing imaging techniques, with the potential to serve as a favorable tool for explicitly studying brain hemodynamics in animal models.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Miembro Anterior/fisiología , Microscopía Acústica/métodos , Percepción/fisiología , Animales , Volumen Sanguíneo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiología , Estimulación Eléctrica , Pie/fisiología , Lateralidad Funcional , Hemoglobinas/metabolismo , Masculino , Microscopía Acústica/instrumentación , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Oxígeno/sangre , Oxígeno/metabolismo , Ratas , Ratas Wistar , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA