Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Mov Sci ; 98: 103295, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39378631

RESUMEN

Vision has previously been correlated with performance in acrobatic sports, highlighting visuomotor expertise adaptations. However, we still poorly understand the visuomotor strategies athletes use while executing twisting somersaults, even though this knowledge might be helpful for skill development. Thus, the present study sought to identify the differences in gaze behavior between elite and sub-elite trampolinists during the execution of four acrobatics of increasing difficulty. Seventeen inertial measurement units and a wearable eye-tracker were used to record the body and gaze kinematics of 17 trampolinists (8 elites, 9 sub-elites). Six typical metrics were analyzed using a mixed analysis of variance (ANOVA) with the Expertise as inter-subject and the Acrobatics as intra-subject factors. To complement this analysis, advanced temporal eye-tracking metrics are reported, such as the dwell time on areas of interest, the scan path on the trampoline bed, the temporal evolution of the gaze orientation endpoint (SPGO), and the time spent executing specific neck and eye strategies. A significant main effect of Expertise was only evidenced in one of the typical metrics, where elite athletes exhibited a higher number of fixations compared to sub-elites (p = 0.033). Significant main effects of Acrobatics were observed on all metrics (p < 0.05), revealing that gaze strategies are task-dependent in trampolining. The recordings of eyes and neck movements performed in this study confirmed the use of "spotting" at the beginning and end of the acrobatics. They also revealed a unique sport-specific visual strategy that we termed as self-motion detection. This strategy consists of not moving the eyes during fast head rotations, a strategy mainly used by trampolinists during the twisting phase. This study proposes a detailed exploration of trampolinists' gaze behavior in highly realistic settings and a temporal description of the visuomotor strategies to enhance understanding of perception-action interactions during the execution of twisting somersaults.

2.
Sports Biomech ; : 1-21, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225168

RESUMEN

Choosing the best acrobatic technique for each athlete remains a challenge for coaches. Predictive simulations may support coaches, but only a few athlete morphologies have been simulated yet. It is assumed that the optimal acrobatic techniques are somehow generalisable across athletes. However, anthropometry characteristics can influence the twist rotation outcome of an acrobatic technique. Our objective was to assess the differences in optimal techniques caused by the anthropometric differences between athletes. Anthropometry-specific techniques of double pike forward somersaults ending with 112 or 212 twists were generated using predictive simulations and the measurements of 18 acrobatic athletes presenting a wide range of anthropometry. We found that anthropometry had an impact on the optimal acrobatic techniques by modifying the amplitude of the strategies used or, more drastically, by modifying the strategies used. Some athletes had a morphological advantage for twist creation, which was measured using the combined twist potential, a metric introduced in the current study. This metric was very strongly correlated with the complexity of the techniques; models with an advantage for twist creation needed fewer/shorter limb movements to generate twists. This research shows that coaches should consider their athletes' anthropometry to offer them better guidance.

3.
Sports Biomech ; 22(2): 316-333, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35319349

RESUMEN

In acrobatic sports, twisting fast before piking allows athletes to enlarge their scoring potential. Since planning the arm and hip movements to twist fast is unintuitive, optimal control appears as a powerful and risk-free tool. To our knowledge, predictive simulations of human motion did not include self-collision avoidance constraints resulting potentially in unrealistic solutions. Our objective was to generate innovative and realistic twisting techniques for forward somersaults ending in pike position by solving an optimal control problem including non-collision constraints. Optimal techniques for one, two, or three twists before piking were generated by minimising the duration of the twisting and piking phases. The model was composed of five segments with one degree of freedom at the chest and two at the hips and shoulders. We explored local minima using a multi-start approach. Solutions were further analysed to assess the impact of non-collision constraints, the segments' contribution to twist creation, and their stability. For each desired number of twists, one relevant solution was chosen. Optimisation showed that trampolinists could attempt new acrobatics: forward triple twisting somersault ending in pike position. This research also shows that non-collision constraints strongly modify the optimal techniques without impairing significantly their performance.


Asunto(s)
Brazo , Deportes , Humanos , Modelos Biológicos , Fenómenos Biomecánicos , Simulación por Computador
4.
Sports Biomech ; 22(2): 300-315, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35670189

RESUMEN

When estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalised for five elite trampoline athletes performing various backward and forward twisting somersaults. Using dynamic optimisation, our algorithm estimated joint angles, velocities and torques by tracking the recorded marker positions. Kinematics, kinetics, angular and linear momenta, and marker tracking difference were compared to results of an Extended Kalman Filter (EKF) followed by inverse dynamics. Angular momentum and horizontal linear momentum were conserved throughout the estimated motion, as per free-fall dynamics. Marker tracking difference went from 17 ± 4 mm for the EKF to 36 ± 11 mm with dynamic optimisation tracking the experimental markers, and to 49 ± 9 mm with dynamic optimisation tracking EKF joint angles. Joint angles from the dynamic optimisations were similar to those of the EKF, and joint torques were smoother. This approach satisfies the dynamics of complex aerial rigid-body movements while remaining close to the experimental 3D marker dataset.


Asunto(s)
Modelos Biológicos , Movimiento , Humanos , Fenómenos Biomecánicos , Movimiento (Física) , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA