RESUMEN
Brown algae are multicellular photosynthetic organisms that have evolved independently of plants and other algae. Here, we have studied the determinism of body axis formation in the kelp Saccharina latissima. After microdissection of the embryo, we show that the stalk, an empty cell that retains the embryo on the maternal tissue, represses longitudinal cell divisions in the early embryo, thereby reinforcing the establishment of the initial apico-basal axis. In addition, it promotes cell growth and controls cell shape and arrangement in the flat oblong embryo composed of cells aligned in rows and columns. Although the stalk persists for several weeks until the embryo reaches at least 500 cells, proper embryogenesis requires connection to maternal tissue only during the first 4â days after fertilisation, i.e. before the embryo reaches the 8-cell stage. Transplantation experiments indicate that the maternal signal is not diffused in seawater, but requires contact between the embryo and the maternal tissue. This first global quantitative study of brown algal embryogenesis highlights the role of MUM, an unknown maternal message, in the control of growth axes and tissue patterning in kelp embryos.
Asunto(s)
Kelp , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Phaeophyceae , Proteínas Algáceas/metabolismo , Algas Comestibles , LaminariaRESUMEN
In most organisms, 3D growth takes place at the onset of embryogenesis. In some brown algae, 3D growth occurs later in development, when the organism consists of several hundred cells. We studied the cellular events that take place when 3D growth is established in the embryo of the brown alga Saccharina, a kelp species. Semi-thin sections, taken from where growth shifts from 2D to 3D, show that 3D growth first initiates from symmetrical cell division in the monolayered lamina, and then is enhanced through a series of asymmetrical cell divisions in a peripheral monolayer of cells called the meristoderm. Then, daughter cells rapidly differentiate into cortical and medullary cells, characterised by their position, size and shape. In essence, 3D growth in kelps is based on a series of differentiation steps that occur rapidly after the initiation of a bilayered lamina, followed by further growth of the established differentiated tissues. Our study depicts the cellular landscape necessary to study cell-fate programming in the context of a novel mode of 3D growth in an organism phylogenetically distant from plants and animals.
Asunto(s)
Escarabajos , Kelp , Phaeophyceae , Animales , División Celular , Diferenciación Celular , Desarrollo EmbrionarioRESUMEN
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 µm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
Asunto(s)
Phaeophyceae/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Forma de la Célula , Pared Celular , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Ácidos Indolacéticos/metabolismo , Modelos BiológicosRESUMEN
Macroalgae (seaweeds) are the subject of increasing interest for their potential as a source of valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared with microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of whole-genome sequences and model organisms for the major seaweed groups. This is partly a consequence of specific hurdles related to the large size of these organisms and their slow growth. As a result, this basic scientific field is falling behind, despite the societal and economic importance of these organisms. Here, we argue that sustainable management of seaweed aquaculture requires fundamental understanding of the underlying biological mechanisms controlling macroalgal life cycles - from the production of germ cells to the growth and fertility of the adult organisms - using diverse approaches requiring a broad range of technological tools. This Viewpoint highlights several examples of basic research on macroalgal developmental biology that could enable the step-changes which are required to adequately meet the demands of the aquaculture sector.
Asunto(s)
Acuicultura , Algas Marinas/crecimiento & desarrollo , Biomasa , Conservación de los Recursos Naturales , Estadios del Ciclo de VidaRESUMEN
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
Asunto(s)
Proteínas Algáceas/genética , Evolución Biológica , Genoma/genética , Phaeophyceae/citología , Phaeophyceae/genética , Animales , Eucariontes , Evolución Molecular , Datos de Secuencia Molecular , Phaeophyceae/metabolismo , Filogenia , Pigmentos Biológicos/biosíntesis , Transducción de Señal/genéticaRESUMEN
We used an in silico approach to predict microRNAs (miRNAs) genome-wide in the brown alga Ectocarpus siliculosus. As brown algae are phylogenetically distant from both animals and land plants, our approach relied on features shared by all known organisms, excluding sequence conservation, genome localization and pattern of base-pairing with the target. We predicted between 500 and 1500 miRNAs candidates, depending on the values of the energetic parameters used to filter the potential precursors. Using quantitative polymerase chain reaction assays, we confirmed the existence of 22 miRNAs among 72 candidates tested, and of 8 predicted precursors. In addition, we compared the expression of miRNAs and their precursors in two life cycle states (sporophyte, gametophyte) and under salt stress. Several miRNA precursors, Argonaute and DICER messenger RNAs were differentially expressed in these conditions. Finally, we analyzed the gene organization and the target functions of the predicted candidates. This showed that E. siliculosus miRNA genes are, like plant miRNA genes, rarely clustered and, like animal miRNA genes, often located in introns. Among the predicted targets, several widely conserved functional domains are significantly overrepresented, like kinesin, nucleotide-binding/APAF-1, R proteins and CED-4 (NB-ARC) and tetratricopeptide repeats. The combination of computational and experimental approaches thus emphasizes the originality of molecular and cellular processes in brown algae.
Asunto(s)
MicroARNs/metabolismo , Phaeophyceae/genética , Secuencia de Bases , Simulación por Computador , Secuencia Conservada , Genómica , MicroARNs/química , MicroARNs/genética , Datos de Secuencia Molecular , Precursores del ARN/química , Precursores del ARN/metabolismoRESUMEN
Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.
Asunto(s)
Chondrus/genética , Evolución Molecular , Genes de Plantas , Secuencia de Bases , MicroARNs/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta/genéticaRESUMEN
Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.
Asunto(s)
Tipificación del Cuerpo/genética , Sitios Genéticos/genética , Phaeophyceae/crecimiento & desarrollo , Phaeophyceae/genética , Diferenciación Celular , Tamaño de la Célula , Segregación Cromosómica/genética , Simulación por Computador , Cruzamientos Genéticos , Genes Recesivos/genética , Células Germinativas de las Plantas/citología , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/ultraestructura , Mutagénesis/genética , Mutación/genética , Phaeophyceae/citología , Phaeophyceae/ultraestructura , Fenotipo , Estructura Terciaria de ProteínaRESUMEN
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, we address the control of cell growth and cell division orientation in the embryo of Saccharina latissima, a brown alga belonging to the order Laminariales, which grows as a stack of cells through transverse cell divisions until growth is initiated along the perpendicular axis. Using laser ablation, we show that apical and basal cells have different functions in the embryogenesis of this alga, with the apical cell being involved mainly in growth and basal cells controlling the orientation of cell division by inhibiting longitudinal cell division and thereby the widening of the embryo. These functions were observed in the very early development before the embryo reached the 8-cell stage. In addition, the growth of the apical and basal regions appears to be cell-autonomous, because there was no compensation for the loss of a significant part of the embryo upon laser ablation, resulting in smaller and less elongated embryos compared with intact embryos. In contrast, the orientation of cell division in the apical region of the embryo appears to be controlled by the basal cell only, which suggests a polarised, non-cell-autonomous mechanism. Altogether, our results shed light on the early mechanisms of growth rate and growth orientation at the onset of the embryogenesis of Saccharina, in which non-cell-specific cell-autonomous and cell-specific non-cell-autonomous processes are involved. This complex control differs from the mechanisms described in the other brown algal embryos, in which the establishment of embryo polarity depends on environmental cues.
RESUMEN
In Saccharina latissima, the embryo develops as a monolayered cell sheet called the lamina or the blade. Each embryo cell is easy to observe, readily distinguishable from its neighbors, and can be individually targeted. For decades, laser ablation has been used to study embryo development. Here, a protocol for cell-specific laser ablation was developed for early embryos of the brown alga S. latissima. The presented work includes: (1) the preparation of Saccharina embryos, with a description of the critical parameters, including culture conditions, (2) the laser ablation settings, and (3) the monitoring of the subsequent growth of the irradiated embryo using time-lapse microscopy. In addition, details are provided on the optimal conditions for transporting the embryos from the imaging platform back to the lab, which can profoundly affect subsequent embryo development. Algae belonging to the order Laminariales display embryogenesis patterns similar to Saccharina; this protocol can thus be easily transferred to other species in this taxon.
Asunto(s)
Terapia por Láser , Phaeophyceae , Embrión de Mamíferos , Desarrollo EmbrionarioRESUMEN
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen's health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device's operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen's cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.
RESUMEN
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.
Asunto(s)
Ácidos Indolacéticos/metabolismo , Morfogénesis , Phaeophyceae/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutación , Phaeophyceae/genética , Phaeophyceae/crecimiento & desarrollo , Transducción de SeñalRESUMEN
In plants, cell growth is constrained by a stiff cell wall, at least this is the way textbooks usually present it. Accordingly, many studies have focused on the elasticity and plasticity of the cell wall as prerequisites for expansion during growth. With their specific evolutionary history, cell wall composition, and environment, brown algae present a unique configuration offering a new perspective on the involvement of the cell wall, viewed as an inert material yet with intrinsic mechanical properties, in growth. In light of recent findings, we explore here how much of the functional relationship between cell wall chemistry and intrinsic mechanics on the one hand, and growth on the other hand, has been uncovered in brown algae.
Asunto(s)
Phaeophyceae , Evolución Biológica , Ciclo Celular , Pared Celular , PlantasRESUMEN
The radiation of life on Earth was accompanied by the diversification of multicellular body plans in the eukaryotic kingdoms Animalia, Plantae, Fungi and Chromista. Branching forms are ubiquitous in nature and evolved repeatedly in the above lineages. The developmental and genetic basis of branch formation is well studied in the three-dimensional shoot and root systems of land plants, and in animal organs such as the lung, kidney, mammary gland, vasculature, etc. Notably, recent thought-provoking studies combining experimental analysis and computational modeling of branching patterns in whole animal organs have identified global patterning rules and proposed unifying principles of branching morphogenesis. Filamentous branching forms represent one of the simplest expressions of the multicellular body plan and constitute a key step in the evolution of morphological complexity. Similarities between simple and complex branching forms distantly related in evolution are compelling, raising the question whether shared mechanisms underlie their development. Here, we focus on filamentous branching organisms that represent major study models from three distinct eukaryotic kingdoms, including the moss Physcomitrella patens (Plantae), the brown alga Ectocarpus sp. (Chromista), and the ascomycetes Neurospora crassa and Aspergillus nidulans (Fungi), and bring to light developmental regulatory mechanisms and design principles common to these lineages. Throughout the review we explore how the regulatory mechanisms of branching morphogenesis identified in other models, and in particular animal organs, may inform our thinking on filamentous systems and thereby advance our understanding of the diverse strategies deployed across the eukaryotic tree of life to evolve similar forms.
Asunto(s)
Ascomicetos/crecimiento & desarrollo , Tipificación del Cuerpo , Bryopsida/crecimiento & desarrollo , Phaeophyceae/crecimiento & desarrolloRESUMEN
Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, ß-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.
Asunto(s)
Alginatos/metabolismo , Pared Celular/química , Ácidos Hexurónicos/metabolismo , Phaeophyceae/fisiología , Estrés Mecánico , Resistencia a la Tracción , Pared Celular/metabolismo , Citoesqueleto/fisiología , Propiedades de SuperficieRESUMEN
BACKGROUND: Brown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of cell organization, including transcriptomic expression analyses. Several topics, including physiological responses to osmotic stress and to exposure to contaminants and solvents are being studied in order to better understand the adaptive capacity of brown algae to pollution and environmental changes. A series of genes that can be used to normalise expression analyses is required for these studies. RESULTS: We monitored the expression of 13 genes under 21 different culture conditions. These included genes encoding proteins and factors involved in protein translation (ribosomal protein 26S, EF1alpha, IF2A, IF4E) and protein degradation (ubiquitin, ubiquitin conjugating enzyme) or folding (cyclophilin), and proteins involved in both the structure of the cytoskeleton (tubulin alpha, actin, actin-related proteins) and its trafficking function (dynein), as well as a protein implicated in carbon metabolism (glucose 6-phosphate dehydrogenase). The stability of their expression level was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles of calculation. CONCLUSION: Comparisons of the data obtained with the three methods of calculation indicated that EF1alpha (EF1a) was the best reference gene for normalisation. The normalisation factor should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-related proteins being good partners of EF1a. Our results exclude actin as a good normalisation gene, and, in this, are in agreement with previous studies in other organisms.
Asunto(s)
Proteínas Algáceas/genética , Phaeophyceae/genética , Phaeophyceae/metabolismo , Medios de Cultivo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Phaeophyceae/crecimiento & desarrolloRESUMEN
We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance "green tides." Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage.
Asunto(s)
Evolución Biológica , Genoma , Rasgos de la Historia de Vida , Ulva/genética , Mapeo Cromosómico , Familia de Multigenes , Ulva/crecimiento & desarrolloRESUMEN
A wide variety of life cycles can be found in the different groups of multicellular eukaryotes. Here we provide an overview of this variety, and review some of the theoretical arguments that have been put forward to explain the evolutionary stability of different life cycle strategies. We also describe recent progress in the analysis of the haploid-diploid life cycle of the model angiosperm Arabidopsis thaliana and show how new molecular data are providing a means to test some of the theoretical predictions. Finally, we describe an emerging model organism from the brown algae, Ectocarpus siliculosus, and highlight the potential of this system for the investigation of the mechanisms that regulate complex life cycles.
Asunto(s)
Biodiversidad , Células Eucariotas , Modelos Biológicos , Animales , Arabidopsis/crecimiento & desarrollo , Chlorophyta/crecimiento & desarrollo , Ecología , Femenino , Genes de Plantas , Células Germinativas , Estadios del Ciclo de Vida , Masculino , Modelos Genéticos , Phaeophyceae/crecimiento & desarrollo , Desarrollo de la Planta , Ploidias , EsporasRESUMEN
The COST Action Phycomorph (FA1406) was initiated in 2015 from a handful of academic researchers, and now joins together 19 European countries and nine international partners. Phycomorph's goal is to coordinate and develop research on developmental biology in macroalgae. This is an ambitious project, as the related scientific community is small, the concepts are complex, and there is currently limited knowledge of these organisms and there are few technologies to study them. Here we report the first step in achieving this enterprise, the creation of the Phycomorph network. We share the associated strengths, pitfalls, and prospects for setting up the network in the hope that this might guide similar efforts in other fields.
Asunto(s)
Cooperación Internacional , Investigación , PlantasRESUMEN
A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney-Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells.