Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 18(7): 1238-51, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19193631

RESUMEN

Polycystin-2 (PC2, TRPP2), the gene product of PKD2, whose mutations cause autosomal dominant polycystic kidney disease (ADPKD), belongs to the superfamily of TRP channels. PC2 is a non-selective cation channel, with multiple subconductance states. In this report, we explored structural and functional properties of PC2 and whether the conductance substates represent monomeric contributions to the channel complex. A kinetic analysis of spontaneous channel currents of PC2 showed that four intrinsic, non-stochastic subconductance states, which followed a staircase behavior, were both pH- and voltage-dependent. To confirm the oligomeric contributions to PC2 channel function, heteromeric PC2/TRPC1 channel complexes were also functionally assessed by single channel current analysis. Low pH inhibited the PC2 currents in PC2 homomeric complexes, but failed to affect PC2 currents in PC2/TRPC1 heteromeric complexes. Amiloride, in contrast, abolished PC2 currents in both the homomeric PC2 complexes and the heteromeric PC2/TRPC1 complexes, thus PC2/TRPC1 complexes have distinct functional properties from the homomeric complexes. The topological features of the homomeric PC2-, TRPC1- and heteromeric PC2/TRPC1 channel complexes, assessed by atomic force microscopy, were consistent with structural tetramers. TRPC1 homomeric channels had different average diameter and protruding height when compared with the PC2 homomers. The contribution of individual monomers to the PC2/TRPC1 hetero-complexes was easily distinguishable. The data support tetrameric models of both the PC2 and TRPC1 channels, where the overall conductance of a particular channel will depend on the contribution of the various functional monomers in the complex.


Asunto(s)
Multimerización de Proteína , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Microscopía de Fuerza Atómica , Unión Proteica , Relación Estructura-Actividad , Canales Catiónicos TRPC/ultraestructura , Canales Catiónicos TRPP/ultraestructura
2.
Cell Biol Int ; 29(3): 245-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15908238

RESUMEN

Myosin II controls the viscoelastic behavior of actin filaments, interacting with actin in an energy-dependent manner. Replacing adenosine triphosphate with adenosine diphosphate changes actomyosin sliding to cross-linking. Rheological measurements show a 3-4-fold increase of the elastic portion G' in actin filaments when myosin II is present at a molar ratio r(MA)=1:200. This observation is supported by the demonstration of inactive myosin heads along actin filaments using atomic force microscopy.


Asunto(s)
Actinas/metabolismo , Actinas/ultraestructura , Actomiosina/metabolismo , Actomiosina/ultraestructura , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Microscopía de Fuerza Atómica
3.
Biomacromolecules ; 6(6): 3458-66, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16283779

RESUMEN

Mammalian gastric mucin, at high concentration, is known to form a gel at low pH, behavior essential to the protection of the stomach from auto-digestion. Atomic force microscopy (AFM) measurements of dilute solutions of porcine gastric mucin in an aqueous environment in the pH range 6-2 provide a direct visualization of extended fiberlike molecules at pH 6 that aggregate at pH 4 and below forming well-defined clusters at pH 2. The clusters consist of 10 or less molecules. AFM images of mucin at high concentration at pH 2 reveal clusters similar to those seen in the dilute solutions at low pH. We also imaged human gastric mucus revealing a network having a "pearl necklace" structure. The "pearls" are similar in size to the clusters found in the purified porcine gastric mucin gels. AFM images of deglycosylated mucin reveal that the deglycosylated portions of the molecule re-fold into compact, globular structures suggesting that the oligosaccharide chains are important in maintaining the extended conformation of mucin. However, the oligosaccharides do not appear to be directly involved in the aggregation at low pH, as clusters of similar size are observed at pH 2 in both native and deglycosylated mucin.


Asunto(s)
Bioquímica/métodos , Mucinas Gástricas/química , Mucosa Gástrica/ultraestructura , Animales , Mucosa Gástrica/metabolismo , Glicosilación , Humanos , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Sustancias Macromoleculares , Microscopía de Fuerza Atómica , Conformación Molecular , Peso Molecular , Unión Proteica , Conformación Proteica , Soluciones , Estómago/ultraestructura , Porcinos , Viscosidad
4.
Pflugers Arch ; 451(1): 304-12, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16133264

RESUMEN

Mucolipidosis type IV (MLIV) is a rare, neurogenetic disorder characterized by developmental abnormalities of the brain, and impaired neurological, ophthalmological, and gastric function. Considered a lysosomal disease, MLIV is characterized by the accumulation of large vacuoles in various cell types. Recent evidence indicates that MLIV is caused by mutations in MCOLN1, the gene that encodes mucolipin-1 (ML1), a 65-kDa protein showing sequence homology and topological similarities with polycystin-2 and other transient receptor potential (TRP) channels. In this report, our observations on the channel properties of ML1, and molecular pathophysiology of MLIV are reviewed and expanded. Our studies have shown that ML1 is a multiple sub-conductance, non-selective cation channel. MLIV-causing mutations result in functional differences in the channel protein. In particular, the V446L and DeltaF408 mutations retain channel function but have interesting functional differences with regards to pH dependence and Ca(2+) transport. While the wild-type protein is inhibited by Ca(2+) transport, mutant ML1 is not. Atomic force microscopy imaging of ML1 channels shows that changes in pH modify the aggregation and size of the ML1 channels, which has an impact on vesicular fusogenesis. The new evidence provides support for a novel role of ML1 cation channels in vesicular acidification and normal endosomal function.


Asunto(s)
Calcio/farmacología , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPM/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Secuencia de Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Mucolipidosis/genética , Mucolipidosis/fisiopatología , Alineación de Secuencia , Canales Catiónicos TRPM/genética
5.
Hum Mol Genet ; 13(6): 617-27, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14749347

RESUMEN

Mucolipidosis type IV (MLIV) is an autosomal recessive neurogenetic disorder characterized by developmental abnormalities of the brain and impaired neurological, ophthalmologic and gastric function. Large vacuoles accumulate in various types of cells in MLIV patients. However, the pathophysiology of the disease at the cellular level is still unknown. MLIV is caused by mutations in a recently described gene, MCOLN1, encoding mucolipin-1 (ML1), a 65 kDa protein whose function is also unknown. ML1 shows sequence homology and topological similarities with polycystin-2 and other transient receptor potential (Trp) channels. In this study, we assessed both, whether ML1 has ion channel properties, and whether disease-causing mutations in MCOLN1 have functional differences with the wild-type (WT) protein. ML1 channel function was assessed from endosomal vesicles of null (MCOLN1(-/-)) and ML1 over-expressing cells, and liposomes containing the in vitro translated protein. Evidence from both preparations indicated that WT ML1 is a multiple subconductance non-selective cation channel whose function is inhibited by a reduction of pH. The V446L and DeltaF408 MLIV causing mutations retain channel function but not the sharp inhibition by lowering pH. Atomic force imaging of ML1 channels indicated that changes in pH modified the aggregation of unitary channels. Mutant-ML1 did not change in size on reduction of pH. The data indicate that ML1 channel activity is regulated by a pH-dependent mechanism that is deficient in some MLIV causing mutations of the gene. The evidence also supports a novel role for cation channels in the acidification and normal endosomal function.


Asunto(s)
Endosomas/metabolismo , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Mucolipidosis/fisiopatología , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Potenciales de la Membrana , Proteínas de la Membrana/genética , Microscopía de Fuerza Atómica , Mutación/genética , Fosfolípidos/metabolismo , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio
6.
Eur Biophys J ; 30(8): 617-24, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11908853

RESUMEN

Previous studies have demonstrated that actin filament organization controls the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel function. The precise molecular nature of the interaction between actin and CFTR, however, remains largely unknown. In this report, interactions between actin and purified human epithelial CFTR were directly assessed by reconstitution of the channel protein in a lipid bilayer system and by atomic force microscopy (AFM). CFTR-containing liposomes in solution were deposited on freshly cleaved mica and imaging was performed in tapping-mode AFM. CFTR function was also determined in identical preparations. Images of single CFTR molecules were obtained, and addition of monomeric actin below its critical concentration showed the formation of actin filaments associated with CFTR. The data indicate a direct interaction between actin and CFTR exists, which may explain the regulatory role of the cytoskeleton in ion channel function. This was confirmed by functional studies of CFTR single-channel currents, which were regulated by addition of various conformations of actin. The present study indicates that CFTR may directly bind actin and that this interaction helps affect the functional properties of this channel protein.


Asunto(s)
Actinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Electrofisiología , Humanos , Insectos , Iones , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Unión Proteica , Pirenos/metabolismo , Proteínas Recombinantes/metabolismo , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA