Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
EMBO J ; 39(21): e105139, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935379

RESUMEN

NF-κB essential modulator (NEMO) is a key regulatory protein that functions during NF-κB- and interferon-mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO-mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K-48-linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2-/- mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Animales , Línea Celular , Femenino , Eliminación de Gen , Humanos , Inmunidad Innata/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , FN-kappa B/metabolismo , Transducción de Señal/genética , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902401

RESUMEN

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Proteínas de la Membrana , Nucleótidos Cíclicos , Porcinos , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/química , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/patogenicidad , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/antagonistas & inhibidores , Nucleótidos Cíclicos/metabolismo , Porcinos/inmunología , Porcinos/virología , Vacunas Atenuadas/inmunología , Proteínas Virales/metabolismo , Vacunas Virales/inmunología , Interacciones Microbiota-Huesped
3.
J Med Virol ; 96(3): e29523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483060

RESUMEN

Tight control of the type I interferon (IFN) signaling pathway is critical for maintaining host innate immune responses, and the ubiquitination and deubiquitination of signaling molecules are essential for signal transduction. Deubiquitinase ubiquitin-specific protein 19 (USP19) is known to be involved in deubiquitinating Beclin1, TRAF3, and TRIF for downregulation of the type I IFN signaling. Here, we show that SIAH1, a cellular E3 ubiquitin ligase that is involved in multicellular pathway, is a potent positive regulator of virus-mediated type I IFN signaling that maintains homeostasis within the antiviral immune response by targeting USP19. In the early stages of virus infection, stabilized SIAH1 directly interacts with the USP19 and simultaneously mediates K27-linked ubiquitination of 489, 490, and 610 residues of USP19 for proteasomal degradation. Additionally, we found that USP19 specifically interacts with MAVS and deubiquitinates K63-linked ubiquitinated MAVS for negative regulation of type I IFN signaling. Ultimately, we identified that SIAH1-mediated degradation of USP19 reversed USP19-mediated deubiquitination of MAVS, Beclin1, TRAF3, and TRIF, resulting in the activation of antiviral immune responses. Taken together, these findings provide new insights into the molecular mechanism of USP19 and SIAH1, and suggest a critical role of SIAH1 in antiviral immune response and homeostasis.


Asunto(s)
Interferón Tipo I , Ubiquitina , Humanos , Ubiquitina/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Beclina-1 , Ubiquitinación , Inmunidad Innata , Interferón Tipo I/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Endopeptidasas/genética , Endopeptidasas/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396775

RESUMEN

DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Factor 3 Regulador del Interferón , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/patogenicidad , Interferones/metabolismo , Porcinos , Proteínas Virales/metabolismo , Virulencia , Factores de Virulencia/genética , Factor 3 Regulador del Interferón/metabolismo , Humanos , Interferón Tipo I/metabolismo
5.
PLoS Pathog ; 16(11): e1009057, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232374

RESUMEN

VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1.


Asunto(s)
Proteínas de la Cápside/genética , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Transducción de Señal , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/metabolismo , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/inmunología , Inmunidad Innata , Interferones/metabolismo , Mutación , Unión Proteica , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo
6.
PLoS Pathog ; 15(8): e1008004, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31412082

RESUMEN

Fas-associated factor 1 is a death-promoting protein that induces apoptosis by interacting with the Fas receptor. Until now, FAF1 was reported to interact potentially with diverse proteins and to function as a negative and/or positive regulator of several cellular possesses. However, the role of FAF1 in defense against bacterial infection remains unclear. Here, we show that FAF1 plays a pivotal role in activating NADPH oxidase in macrophages during Listeria monocytogenes infection. Upon infection by L. monocytogenes, FAF1 interacts with p67phox (an activator of the NADPH oxidase complex), thereby facilitating its stabilization and increasing the activity of NADPH oxidase. Consequently, knockdown or ectopic expression of FAF1 had a marked effect on production of ROS, proinflammatory cytokines, and antibacterial activity, in macrophages upon stimulation of TLR2 or after infection with L. monocytogenes. Consistent with this, FAF1gt/gt mice, which are knocked down in FAF1, showed weaker inflammatory responses than wild-type mice; these weaker responses led to increased replication of L. monocytogenes. Collectively, these findings suggest that FAF1 positively regulates NADPH oxidase-mediated ROS production and antibacterial defenses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Inmunidad Innata/inmunología , Inflamación/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Listeria monocytogenes/inmunología , Listeriosis/metabolismo , Listeriosis/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal
7.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30355684

RESUMEN

Tryptophanyl-tRNA synthetase (WRS) is one of the aminoacyl-tRNA synthetases (ARSs) that possesses noncanonical functions. Full-length WRS is released during bacterial infection and primes the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to elicit innate immune responses. However, the role of WRS in viral infection remains unknown. Here, we show that full-length WRS is secreted by immune cells in the early phase of viral infection and functions as an antiviral cytokine. Treatment of cells with recombinant WRS protein promotes the production of inflammatory cytokines and type I interferons (IFNs) and curtails virus replication in THP-1 and Raw264.7 cells but not in TLR4-/- or MD2-/- bone marrow-derived macrophages (BMDMs). Intravenous and intranasal administration of recombinant WRS protein induces an innate immune response and blocks viral replication in vivo These findings suggest that secreted full-length WRS has a noncanonical role in inducing innate immune responses to viral infection as well as to bacterial infection.IMPORTANCE ARSs are essential enzymes in translation that link specific amino acids to their cognate tRNAs. In higher eukaryotes, some ARSs possess additional, noncanonical functions in the regulation of cell metabolism. Here, we report a novel noncanonical function of WRS in antiviral defense. WRS is rapidly secreted in response to viral infection and primes the innate immune response by inducing the secretion of proinflammatory cytokines and type I IFNs, resulting in the inhibition of virus replication both in vitro and in vivo Thus, we consider WRS to be a member of the antiviral innate immune response. The results of this study enhance our understanding of host defense systems and provide additional information on the noncanonical functions of ARSs.


Asunto(s)
Infecciones por Rhabdoviridae/inmunología , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo , Vesiculovirus/patogenicidad , Administración Intranasal , Administración Intravenosa , Animales , Línea Celular , Citocinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Ratones , Células RAW 264.7 , Infecciones por Rhabdoviridae/genética , Células THP-1 , Triptófano-ARNt Ligasa/administración & dosificación , Vesiculovirus/inmunología
8.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468885

RESUMEN

Rubicon is part of a Beclin-1-Vps34-containing autophagy complex. Rubicon induces antimicrobial responses upon Toll-like receptor (TLR) stimulation and functions as a feedback inhibitor to prevent unbalanced proinflammatory responses depending on dectin-1 signaling. However, the role played by Rubicon during antiviral immune responses, particularly the type I interferon (IFN) responses, remains largely unknown. Here, we report that Rubicon acts as a negative regulator for virus-triggered IFN signaling. Knockdown of Rubicon promoted type I interferon signaling and inhibited virus replication, while overexpression of Rubicon had the opposite effect. Rubicon specifically interacts with the interferon regulatory factor (IRF) association domain (IAD) of IRF3, and this interaction leads to inhibition of the dimerization of IRF3, which negatively regulates IFN-mediated antiviral response. Thus, our findings suggest the novel additional role of Rubicon as a negative regulator that inhibits the IFN signaling and cellular antiviral responses, providing a novel cellular mechanism of IRF3 inhibition.IMPORTANCE The type I IFN system is a critical innate immune response that protects organisms against virus infection. However, type I IFN signaling must be tightly regulated to avoid excessive production of IFNs. Hence, negative regulatory mechanisms for type I IFN signaling are important, and to date, several related molecules have been identified. Here, we show that Rubicon is a major negative regulator of type I IFN signaling, and unlike previous reports of cellular molecules that inhibit IRF3 activation via proteasomal degradation or dephosphorylation of IRF3, we show that Rubicon interacts with IRF3 and that ultimately this interaction leads to inhibition of the dimerization of IRF3. Thus, we identified a novel negative regulator of type I IFN signaling pathways and a novel cellular mechanism of IRF3 inhibition. The results of this study will increase our understanding of the role of negative-feedback mechanisms that regulate type I IFN signaling and maintain immune homeostasis.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Multimerización de Proteína , Transducción de Señal , Vesiculovirus/inmunología , Animales , Ratones , Células RAW 264.7
9.
J Microbiol Biotechnol ; 34(3): 735-745, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37915251

RESUMEN

Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Lacticaseibacillus casei , Animales , Ratones , Lacticaseibacillus casei/genética , Interleucina-4 , Administración a través de la Mucosa , Inmunidad , Administración Oral
10.
Int J Biol Macromol ; 274(Pt 2): 133207, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897494

RESUMEN

The substantial waste of perishable foods during transportation significantly contributes to greenhouse gas emissions, intensifying the climate crisis. To mitigate the rapid spoilage of fruits, an eco-friendly bilayer film was developed using natural egg white (EW), amylose (Am), and tannic acid (TA). The EW/Am-TA bilayer film features a primary layer of amphiphilic EW, ensuring a uniform coating on hydrophobic fruit surfaces, and a secondary layer composed of Am and TA, imparting notable tensile strength (5.3 ± 0.5 MPa) and elongation at break (28.5 ± 4.1 %). This bilayer film effectively shields fruits from UV-B and UV-C radiation (~0 % transmittance at 280 and 330 nm) and exhibits antioxidant and antibacterial properties due to the presence of TA. Fruits such as bananas, avocados, and cherry tomatoes, when dip-coated with the optimized EW/Am-TA bilayer, maintained their freshness, color, weight, and texture for up to seven days, demonstrating the effectiveness of this bilayer coating in food preservation. The natural materials in the coated film are edible and can be safely removed with tap water at room temperature in <10 s, posing no food safety risks. Thus, the proposed bilayer coating presents a significant solution to the global problem of food waste.

11.
J Microbiol ; 62(2): 125-134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38480615

RESUMEN

African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Vacunas Atenuadas/genética , Proteínas Virales/genética , Sus scrofa , Desarrollo de Vacunas , Línea Celular
12.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851077

RESUMEN

African swine fever virus (ASFV) is the causative agent of the highly contagious disease African swine fever (ASF), which can result in mortality rates of up to 100% in pigs infected by virulent strains [...].

13.
ACS Appl Mater Interfaces ; 15(16): 20435-20443, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053446

RESUMEN

Face masks are increasingly important in the battle against infectious diseases and air pollution. Nanofibrous membranes (NFMs) are promising filter layers for removing particulate matter (PM) without restricting air permeability. In this study, tannic-acid-enriched poly(vinyl alcohol) (PVA-TA) NFMs were fabricated by electrospinning PVA solutions containing large amounts of tannic acid (TA), a multifunctional polyphenol compound. We were able to prepare uniform electrospinning solution without coacervate formation by inhibiting the robust hydrogen bonding between PVA and TA. Notably, the NFM maintained its fibrous structure even under moist conditions after heat treatment without the use of a cross-linking agent. Further, the mechanical strength and thermal stability of the PVA NFM were improved by the introduction of TA. The functional PVA NFM with a high TA content showed excellent UV-shielding (UV-A: 95.7%, UV-B: 100%) and antibacterial activity against Escherichia coli (inhibition zone: 8.7 ± 1.2 mm) and Staphylococcus aureus (inhibition zone: 13.7 ± 0.6 mm). Moreover, the particle filtration efficiency of the PVA-TA NFM for PM0.6 particles was 97.7% at 32 L min-1 and 99.5% at 85 L min-1, indicating excellent filtration performance and a low pressure drop. Therefore, the TA-enriched PVA NFM is a promising mask filter layer material with excellent UV-blocking and antibacterial properties and has the potential for various practical applications.


Asunto(s)
Nanofibras , Alcohol Polivinílico , Alcohol Polivinílico/química , Nanofibras/química , Máscaras , Antibacterianos/farmacología , Antibacterianos/química , Filtración , Material Particulado , Taninos
14.
Front Immunol ; 14: 1242183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881429

RESUMEN

Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-ß, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.


Asunto(s)
Clostridium butyricum , Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Humanos , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Subtipo H3N2 del Virus de la Influenza A , Citocinas/farmacología
15.
Cell Rep ; 42(11): 113358, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917584

RESUMEN

Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45ß) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45ß deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45ß knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45ß interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45ß markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45ß complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45ß as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.


Asunto(s)
Interferón Tipo I , Infecciones por Virus ARN , Animales , Ratones , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Gránulos de Estrés
16.
Viruses ; 15(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37376674

RESUMEN

This study investigated the antiviral activity of aqueous leaf extract of Costus speciosus (TB100) against influenza A. Pretreatment of TB100 in RAW264.7 cells enhanced antiviral activity in an assay using the green fluorescence-expressing influenza A/Puerto Rico/8/1934 (H1N1) virus. The fifty percent effective concentration (EC50) and fifty percent cytotoxic concentration (CC50) were determined to be 15.19 ± 0.61 and 117.12 ± 18.31 µg/mL, respectively, for RAW264.7 cells. Based on fluorescent microscopy, green fluorescence protein (GFP) expression and viral copy number reduction confirmed that TB100 inhibited viral replication in murine RAW264.7 and human A549 and HEp2 cells. In vitro pretreatment with TB100 induced the phosphorylation of transcriptional activators TBK1, IRF3, STAT1, IKB-α, and p65 associated with interferon pathways, indicating the activation of antiviral defenses. The safety and protective efficacy of TB100 were assessed in BALB/c mice as an oral treatment and the results confirmed that it was safe and effective against influenza A/Puerto Rico/8/1934 (H1N1), A/Philippines/2/2008 (H3N2), and A/Chicken/Korea/116/2004 (H9N2). High-performance liquid chromatography of aqueous extracts led to the identification of cinnamic, caffeic, and chlorogenic acids as potential chemicals for antiviral responses. Further confirmatory studies using these acids revealed that each of them confers significant antiviral effects against influenza when used as pretreatment and enhances the antiviral response in a time-dependent manner. These findings suggest that TB100 has the potential to be developed into an antiviral agent that is effective against seasonal influenza.


Asunto(s)
Costus , Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Plantas Medicinales , Humanos , Animales , Ratones , Plantas Medicinales/química , Gripe Humana/tratamiento farmacológico , Subtipo H3N2 del Virus de la Influenza A , Antivirales/uso terapéutico , Extractos Vegetales/química , Replicación Viral
17.
Carbohydr Polym ; 277: 118834, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893251

RESUMEN

Multifunctional and thermoresponsive hydrogels can be used as soft materials in various medical applications, such as beauty devices, drug delivery, and near-infrared (NIR) lasers. In this study, methylcellulose (MC) composite hydrogels containing tannic acid (TA) and Fe3+ were prepared via a simple, fast process. The MC composite hydrogel contains hydrogen bonds between the MC polymer and TA and coordination bonds between TA and Fe3+, without losing the reversible thermogelation properties of the MC polymer. The gelation rates and mechanical properties of the MC composite hydrogel were controlled by varying its TA and Fe3+ contents. In particular, the hydrogel with a TA-Fe chelating complex showed an excellent photothermal effect, indicating its potential application in cosmetic beauty devices. It also exhibited UV-blocking, antioxidant, and antibacterial properties owing to the multifunctional TA. The facile processing of these MC/TA/Fe hydrogels provides new opportunities for biomedical applications and beauty devices employing NIR laser therapy.

18.
Gels ; 8(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36286151

RESUMEN

The inevitable bleeding and infections caused by disasters and accidents are the main causes of death owing to extrinsic trauma. Hemostatic agents are often used to quickly suppress bleeding and infection, and they can solve this problem in a short time. Silk fibroin (SF) has poor processibility in water, owing to incomplete solubility therein. In this study, aiming to overcome this disadvantage, a modified silk fibroin (SF-BGE), easily soluble in water, was prepared by introducing butyl glycidyl ether (BGE) into its side chain. Subsequently, a small amount of tannic acid (TA) was introduced to prepare an SF-BGE /TA solution, and ZnO nanoparticles (NPs) were added to the solution to form the coordination bonds between the ZnO and TA, leading to an SF-based nanocomposite hydrogel. A structural characterization of the SF-BGE, SF-BGE/TA, SF-BGE/TA/ZnO, and the coordination bonds between ZnO/TA was observed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the phase change was observed by rheological measurements. The pore formation of the SF-BGE/TA/ZnO hydrogel and dispersibility of ZnO were verified through energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The cytocompatible and hemostatic performances of the SF-BGE/TA/ZnO NPs composite hydrogels were evaluated, and the hydrogels showed superior hemostatic and cytocompatible activities. Therefore, the SF-based nanocomposite hydrogel is considered as a promising material for hemostasis.

19.
Viruses ; 14(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146866

RESUMEN

Foot-and-mouth disease (FMD) is mainly characterized by blister formation (vesicles) in animals infected with foot-and-mouth disease virus (FMDV). However, the molecular basis of the blister formation in FMD is still unknown. BP180 is one of the main anchoring proteins connecting the dermal and epidermal layers of the skin. Previous studies have shown that the cleavage of BP180 by proteases produced by the inflammatory cells and the resulting skin loosening are major causes of the blister formation in bullous pemphigoid (BP) disease. Similar to BP, here we have demonstrated that, among the FMDV-encoded proteases, only FMDV 3Cpro contributes to the cleavage of BP180 at multiple sites, consequently inducing the degradation of BP180, leading to skin loosening. Additionally, we confirmed that FMDV 3Cpro interacts directly with BP180 and the FMDV 3Cpro C142T mutant, known to have reduced protease activity, is less effective for BP180 degradation than wild-type FMDV 3Cpro. In conclusion, for the first time, our results demonstrate the function of FMDV 3Cpro on the connective-tissue protein BP180 associated with blister formation.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Vesícula , Cisteína Endopeptidasas/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Péptido Hidrolasas , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Front Immunol ; 13: 1020262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248821

RESUMEN

Foot-and-mouth disease virus (FMDV) is a single-stranded, positive-sense RNA virus containing at least 13 proteins. Many of these proteins show immune modulation capabilities. As a non-structural protein of the FMDV, 2B is involved in the rearrangement of the host cell membranes and the disruption of the host secretory pathway as a viroporin. Previous studies have also shown that FMDV 2B plays a role in the modulation of host type-I interferon (IFN) responses through the inhibition of expression of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling. However, the exact molecular mechanism is poorly understood. Here, we demonstrated that FMDV 2B modulates host IFN signal pathway by the degradation of RIG-I and MDA5. FMDV 2B targeted the RIG-I for ubiquitination and proteasomal degradation by recruiting E3 ubiquitin ligase ring finger protein 125 (RNF125) and also targeted MDA5 for apoptosis-induced caspase-3- and caspase-8-dependent degradation. Ultimately, FMDV 2B significantly inhibited RNA virus-induced IFN-ß production. Importantly, we identified that the C-terminal amino acids 126-154 of FMDV 2B are essential for 2B-mediated degradation of the RIG-I and MDA5. Collectively, these results provide a clearer understanding of the specific molecular mechanisms used by FMDV 2B to inhibit the IFN responses and a rational approach to virus attenuation for future vaccine development.


Asunto(s)
Virus de la Fiebre Aftosa , Interferón Tipo I , Aminoácidos/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Viroporinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA