Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(2): 40, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296887

RESUMEN

KEY MESSAGE: Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.


Asunto(s)
Gossypium , ARN Largo no Codificante , ARN Largo no Codificante/genética , Fibra de Algodón , Fenotipo , Estructuras de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Expert Syst Appl ; 213: 119212, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36407848

RESUMEN

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly virus has spread worldwide, leading to a global pandemic since March 2020. A recent variant of SARS-CoV-2 named Delta is intractably contagious and responsible for more than four million deaths globally. Therefore, developing an efficient self-testing service for SARS-CoV-2 at home is vital. In this study, a two-stage vision-based framework, namely Fruit-CoV, is introduced for detecting SARS-CoV-2 infections through recorded cough sounds. Specifically, audio signals are converted into Log-Mel spectrograms, and the EfficientNet-V2 network is used to extract their visual features in the first stage. In the second stage, 14 convolutional layers extracted from the large-scale Pretrained Audio Neural Networks for audio pattern recognition (PANNs) and the Wavegram-Log-Mel-CNN are employed to aggregate feature representations of the Log-Mel spectrograms and the waveform. Finally, the combined features are used to train a binary classifier. In this study, a dataset provided by the AICovidVN 115M Challenge is employed for evaluation. It includes 7,371 recorded cough sounds collected throughout Vietnam, India, and Switzerland. Experimental results indicate that the proposed model achieves an Area Under the Receiver Operating Characteristic Curve (AUC) score of 92.8% and ranks first on the final leaderboard of the AICovidVN 115M Challenge. Our code is publicly available.

3.
Clin Infect Dis ; 75(1): e432-e439, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34849615

RESUMEN

BACKGROUND: The role of favipiravir in preventing disease progression in coronavirus disease 2019 (COVID-19) remains uncertain. We aimed to determine its effect in preventing disease progression from nonhypoxia to hypoxia among high-risk COVID-19 patients. METHODS: This was an open-label, randomized clinical trial conducted at 14 public hospitals across Malaysia (February-July 2021) among 500 symptomatic, RT-PCR-confirmed COVID-19 patients, aged ≥50 years with ≥1 comorbidity, and hospitalized within first 7 days of illness. Patients were randomized 1:1 to favipiravir plus standard care or standard care alone. Favipiravir was administered at 1800 mg 2×/day on day 1 followed by 800 mg 2×/day until day 5. The primary endpoint was rate of clinical progression from nonhypoxia to hypoxia. Secondary outcomes included rates of mechanical ventilation, intensive care unit (ICU) admission, and in-hospital mortality. RESULTS: Of 500 patients randomized (mean [SD] age, 62.5 [8.0] years; 258 women [51.6%]; 251 [50.2%] had COVID-19 pneumonia), 487 (97.4%) patients completed the trial. Clinical progression to hypoxia occurred in 46 (18.4%) patients on favipiravir plus standard care and 37 (14.8%) on standard care alone (OR, 1.30; 95% CI: .81-2.09; P = .28). All 3 prespecified secondary endpoints were similar between both groups. Mechanical ventilation occurred in 6 (2.4%) vs 5 (2.0%) (OR, 1.20; 95% CI: .36-4.23; P = .76), ICU admission in 13 (5.2%) vs 12 (4.8%) (OR, 1.09; 95% CI: .48-2.47; P = .84), and in-hospital mortality in 5 (2.0%) vs 0 (OR, 12.54; 95% CI: .76-207.84; P = .08) patients. CONCLUSIONS: Among COVID-19 patients at high risk of disease progression, early treatment with oral favipiravir did not prevent their disease progression from nonhypoxia to hypoxia. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov (NCT04818320).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Amidas , Progresión de la Enfermedad , Femenino , Humanos , Hipoxia , Persona de Mediana Edad , Pirazinas , SARS-CoV-2 , Resultado del Tratamiento
4.
Public Health Nutr ; : 1-23, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35232511

RESUMEN

OBJECTIVE: To describe the use of artificial intelligence (AI)-enabled dark nudges by leading global food and beverage companies to influence consumer behaviour. DESIGN: The five most recent annual reports (ranging from 2014-2018 or 2015-2019, depending on the company) and websites from 12 of the leading companies in the global food and beverage industry were reviewed to identify uses of AI and emerging technologies to influence consumer behaviour. Uses of AI and emerging technologies were categorised according to the Typology of Interventions in Proximal Physical Micro-Environments (TIPPME) framework, a tool for categorising and describing nudge-type behaviour change interventions (which has also previously been used to describe dark nudge-type approaches used by the alcohol industry). SETTING: Not applicable. PARTICIPANTS: 12 leading companies in the global food and beverage industry. RESULTS: Text was extracted from 56 documents from 11 companies. AI-enabled dark nudges used by food and beverage companies included those that altered products and objects' availability (e.g., social listening to inform product development), position (e.g., decision technology and facial recognition to manipulate the position of products on menu boards), functionality (e.g., decision technology to prompt further purchases based on current selections) and presentation (e.g., augmented or virtual reality to deliver engaging and immersive marketing). CONCLUSIONS: Public health practitioners and policymakers must understand and engage with these technologies and tactics if they are to counter industry promotion of products harmful to health, particularly as investment by the industry in AI and other emerging technologies suggests their use will continue to grow.

5.
Genome ; 64(11): 985-995, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34253086

RESUMEN

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.


Asunto(s)
Fibra de Algodón , Genes de Plantas , Gossypium , Perfilación de la Expresión Génica , Gossypium/genética , Sitios de Carácter Cuantitativo , Transcriptoma
6.
Sensors (Basel) ; 21(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34883940

RESUMEN

Automated deep neural architecture generation has gained increasing attention. However, exiting studies either optimize important design choices, without taking advantage of modern strategies such as residual/dense connections, or they optimize residual/dense networks but reduce search space by eliminating fine-grained network setting choices. To address the aforementioned weaknesses, we propose a novel particle swarm optimization (PSO)-based deep architecture generation algorithm, to devise deep networks with residual connections, whilst performing a thorough search which optimizes important design choices. A PSO variant is proposed which incorporates a new encoding scheme and a new search mechanism guided by non-uniformly randomly selected neighboring and global promising solutions for the search of optimal architectures. Specifically, the proposed encoding scheme is able to describe convolutional neural network architecture configurations with residual connections. Evaluated using benchmark datasets, the proposed model outperforms existing state-of-the-art methods for architecture generation. Owing to the guidance of diverse non-uniformly selected neighboring promising solutions in combination with the swarm leader at fine-grained and global levels, the proposed model produces a rich assortment of residual architectures with great diversity. Our devised networks show better capabilities in tackling vanishing gradients with up to 4.34% improvement of mean accuracy in comparison with those of existing studies.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Benchmarking , Recolección de Datos
7.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807806

RESUMEN

In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed PSO variant incorporates four key operations, including a modified PSO operation with rectified personal and global best signals, spiral search based local exploitation, Gaussian distribution-based swarm leader enhancement, and mirroring and mutation operations for worst solution improvement. The second proposed PSO model enhances the first one through four new strategies, i.e., an adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution enhancement, respectively. In comparison with a set of 15 classical and advanced search methods, the proposed models illustrate statistical superiority for discriminative feature selection for a total of 13 data sets.

8.
J Nematol ; 522020.
Artículo en Inglés | MEDLINE | ID: mdl-33829162

RESUMEN

Cotton is widely grown in the southern US and Meloidogyne incognita is its most significant pathogen. The germplasm line M-120 RNR is highly resistant to M. incognita due to two resistance QTLs (quantitative trait loci), qMi-C11 and qMi-C14. Both QTLs reduce total egg production, but the QTLs affect M. incognita development at different life stages. The QTLs do not appear to affect initial penetration of M. incognita but genotypes containing qMi-C11 had fewer nematodes in the roots 8 days after inoculation than near isolines without qMi-C11, which may indicate M. incognita egression from roots. Three greenhouse trials were conducted using cotton isolines to determine whether qMi-C11 and qMi-C14 affect egression of M. incognita juveniles from roots. On each of the five sampling dates (4, 6, 8, 10, and 12 DAI), nematodes that egressed from roots were counted and roots were stained to count nematodes that remained in the roots. The effect of resistance QTLs on M. incognita egression from the roots differed among the trials. Nematode egression was consistently numerically greater, but inconsistently statistically different, from plants with both QTLs than from plants with neither QTL. Plants with only one QTL generally did not differ from plants with both QTLs, and the effects of qMi-C11 and qMi-C14 did not differ in any consistent way. In a separate experiment, plants with neither QTL had more eggs per egg mass than did plants with both QTLs, whereas plants with only one QTL had an intermediate number. Root gall size was measured in two trials and no consistent differences in gall size were observed. We conclude that (1) qMi-C11 and qMi-C14 do not stimulate nematode egression from cotton roots, (2) both qMi-C11 and qMi-C14 reduce M. incognita eggs/egg mass, and (3) neither qMi-C11 nor qMi-C14 affect gall size.

9.
Plant Dis ; 103(5): 853-858, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30864940

RESUMEN

Quantitative trait loci (QTLs) qMi-C11 and qMi-C14 impart a high level of resistance to Meloidogyne incognita in cotton. Breeders had previously backcrossed both QTLs into the susceptible Coker 201 to create the highly resistant M-120 RNR, and we crossed Coker 201 and M-120 RNR to create near-isogenic lines with either qMi-C11 or qMi-C14. Previous work suggests different modes of action for qMi-C11 and qMi-C14. To document individual and combined effects of the QTLs on nematode development and reproduction, Coker 201 (neither QTL), M-120 RNR (both QTLs), CH11 near isoline (qMi-C11), and CH14 near isoline (qMi-C14) were inoculated with M. incognita. At 4, 8, 12, 16, 20, 25, and 30 days after inoculation (DAI), roots were stained to observe nematode developmental stages (second-stage juvenile [J2], swollen second-stage juvenile [SJ2], third-stage juvenile [J3], fourth-stage juvenile [J4], and female), and the number of galls was counted. At 20, 25, 30, and 40 DAI, M. incognita eggs were harvested and counted. At 30 DAI, 80% of the nematodes on Coker 201 were female compared with 50, 40, and 33% females on CH14, CH11, and M-120 RNR, respectively, and greater proportions of nematodes remained in J2 in M-120 RNR (41%), CH11 (58%), and CH14 (27%) than in Coker 201 (9%). More nematodes progressed to J3 or J4 on Coker 201 and CH14 than on CH11 or M-120 RNR. Coker 201 and CH14 had more galls than M-120 RNR. Coker 201 had more eggs than the other genotypes at 30 DAI. Nematode development beyond J2 or SJ2 was significantly reduced by qMi-C11, and development beyond J3 or J4 was significantly reduced by qMi-C14. This study confirms that qMi-C11 and qMi-C14 act at different times and have different effects on the development of M. incognita, and therefore, they have different modes of action.


Asunto(s)
Resistencia a la Enfermedad , Gossypium , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Femenino , Genotipo , Gossypium/genética , Masculino , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Tylenchoidea/crecimiento & desarrollo
10.
J Nematol ; 51: 1-10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31088027

RESUMEN

The interaction between Fusarium oxysporum f. sp. vasinfectum (Fov) and Meloidogyne incognita (root-knot nematode) resulting in Fusarium wilt (FW) of cotton is well-known. Although Belonolaimus longicaudatus (sting nematode) can also interact with Fov and cause FW, it has long been believed that virtually all of the FW in Georgia is caused by the interaction of Fov with M. incognita. In recent years, FW has been reported more frequently in Georgia, which suggests that something affecting the disease complex may have changed. In 2015 and 2016, a survey of 27 Georgia cotton fields in 10 counties was conducted. At least 10 soil and stem samples per field were collected from individual plants showing symptoms of FW to quantify plant-parasitic nematode levels and identify Fov races. Fov race 1 was identified in all samples in 2015, but one sample also had the LA110 genotype and another sample also had the LA108 genotype. In 2016, all Fov races and genotypes found in 2015 were present, however, MDS-12 and LA127/140 also were found. Meloidogyne incognita was present in 18% of fields in 2015 and 40% in 2016, whereas B. longicaudatus was present in all fields in 2015 and 75% of fields in 2016. Regardless of whether they occurred separately or together, M. incognita and B. longicaudatus were present, respectively, in 18% and 55% of individual samples in 2015 and 40% and 51% in 2016. However, M. incognita without B. longicaudatus was found in 7% of samples in 2015 and 34% in 2016, whereas B. longicaudatus without M. incognita was found in 45% of samples in 2015 and 44% in 2016. We conclude that Fov race 1 continues to be the dominant race in Georgia and many instances of FW in Georgia may be due to Fov interacting with B. longicaudatus and not M. incognita as previously believed.The interaction between Fusarium oxysporum f. sp. vasinfectum (Fov) and Meloidogyne incognita (root-knot nematode) resulting in Fusarium wilt (FW) of cotton is well-known. Although Belonolaimus longicaudatus (sting nematode) can also interact with Fov and cause FW, it has long been believed that virtually all of the FW in Georgia is caused by the interaction of Fov with M. incognita. In recent years, FW has been reported more frequently in Georgia, which suggests that something affecting the disease complex may have changed. In 2015 and 2016, a survey of 27 Georgia cotton fields in 10 counties was conducted. At least 10 soil and stem samples per field were collected from individual plants showing symptoms of FW to quantify plant-parasitic nematode levels and identify Fov races. Fov race 1 was identified in all samples in 2015, but one sample also had the LA110 genotype and another sample also had the LA108 genotype. In 2016, all Fov races and genotypes found in 2015 were present, however, MDS­12 and LA127/140 also were found. Meloidogyne incognita was present in 18% of fields in 2015 and 40% in 2016, whereas B. longicaudatus was present in all fields in 2015 and 75% of fields in 2016. Regardless of whether they occurred separately or together, M. incognita and B. longicaudatus were present, respectively, in 18% and 55% of individual samples in 2015 and 40% and 51% in 2016. However, M. incognita without B. longicaudatus was found in 7% of samples in 2015 and 34% in 2016, whereas B. longicaudatus without M. incognita was found in 45% of samples in 2015 and 44% in 2016. We conclude that Fov race 1 continues to be the dominant race in Georgia and many instances of FW in Georgia may be due to Fov interacting with B. longicaudatus and not M. incognita as previously believed.

11.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23257886

RESUMEN

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Asunto(s)
Evolución Biológica , Fibra de Algodón , Genoma de Planta/genética , Gossypium/genética , Poliploidía , Alelos , Cacao/genética , Cromosomas de las Plantas/genética , Diploidia , Duplicación de Gen/genética , Genes de Plantas/genética , Gossypium/clasificación , Anotación de Secuencia Molecular , Filogenia , Vitis/genética
12.
BMC Public Health ; 18(1): 946, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30068318

RESUMEN

BACKGROUND: Epidemiologic measures of the dengue burden such as prevalence and incidence are important for policy-making and monitoring the progress of disease control. It is a common practice where epidemiologic and economic research estimate dengue burden based on notification data. However, a basic challenge in estimating the incidence of dengue is that a significant proportion of infected population are asymptomatic. It can be overcome by using mathematical models that relate observed prevalence and mortality to incidence. In this study, we estimate the trend of dengue incidence and hospitalization in Malaysia. METHODS: This study is based entirely on the available secondary data sources on dengue in Malaysia. The age-specific incidence of dengue between 2001 and 2013 was estimated using the prevalence and mortality estimates in an incidence-prevalence-mortality (IPM) model. Data on dengue prevalence were extracted from six sero-surveys conducted in Malaysia between 2001 and 2013; while statistics on dengue notification and Case Fatality Rate were derived from National Dengue Surveillance System. Dengue hospitalization data for the years 2009 to 2013 were extracted from the Health Informatics Centre and the volumes of dengue hospitalization for hospitals with missing data were estimated with Poisson models. RESULTS: The dengue incidence in Malaysia varied from 69.9 to 93.4 per 1000 population (pkp) between 2001 and 2013.The temporal trend in incidence rate was decreasing since 2001. It has been reducing at an average rate of 2.57 pkp per year from 2001 to 2013 (p = 0.011). The age-specific incidence of dengue decreased steadily with dengue incidence reaching zero by age > 70 years. Dengue notification rate has remained stable since 2001 and the number of notified cases each year was only a small fraction of the incident cases (0.7 to 2.3%). Similarly, the dengue hospitalization was larger but still a small fraction of the incident cases (3.0 to 5.6%). CONCLUSION: Dengue incidence can be estimated with the use of sero-prevalence surveys and mortality data. This study highlights a reducing trend of dengue incidence in Malaysia and demonstrates the discrepancy between true dengue disease burden and cases reported by national surveillance system. Sero-prevalence studies with representative samples should be conducted regularly to allow better estimation of dengue burden in Malaysia.


Asunto(s)
Dengue/epidemiología , Hospitalización/estadística & datos numéricos , Modelos Teóricos , Vigilancia de la Población/métodos , Adolescente , Adulto , Distribución por Edad , Anciano , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Almacenamiento y Recuperación de la Información , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Formulación de Políticas , Prevalencia , Características de la Residencia , Sesgo de Selección , Estudios Seroepidemiológicos , Adulto Joven
13.
Theor Appl Genet ; 130(10): 2219-2230, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28801756

RESUMEN

KEY MESSAGE: This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.


Asunto(s)
Cromatina/genética , Gossypium/genética , Fitomejoramiento , Alelos , Segregación Cromosómica , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Variación Genética , Genoma de Planta , Gossypium/clasificación , Tetraploidía
14.
Theor Appl Genet ; 130(6): 1297-1308, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28349176

RESUMEN

KEY MESSAGE: QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.


Asunto(s)
Fibra de Algodón , Cruzamientos Genéticos , Gossypium/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Epistasis Genética , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Fenotipo , Fitomejoramiento
15.
Theor Appl Genet ; 130(6): 1309-1319, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28361363

RESUMEN

KEY MESSAGE: A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length. Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.


Asunto(s)
Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Sitios de Carácter Cuantitativo , Sistemas de Transporte de Aminoácidos/genética , Genes de Plantas , Marcadores Genéticos , Genotipo , Liasas/genética , Fenotipo
16.
BMC Genomics ; 17: 567, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27503539

RESUMEN

BACKGROUND: The southern root-knot nematode (Meloidogyne incognita; RKN) is one of the most important economic pests of Upland cotton (Gossypium hirsutum L.). Host plant resistance, the ability of a plant to suppress nematode reproduction, is the most economical, practical, and environmentally sound method to provide protection against this subterranean pest. The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance. Prior genetic analysis has identified two epistatically interacting RKN resistance QTLs, qMi-C11 and qMi-C14, affecting gall formation and RKN reproduction, respectively. RESULTS: We developed a genetic population segregating only for the qMi-C14 locus and evaluated the genetic effects of this QTL on RKN resistance in the absence of the qMi-C11 locus. The qMi-C14 locus had a LOD score of 12 and accounted for 24.5 % of total phenotypic variation for egg production. In addition to not being significantly associated with gall formation, this locus had a lower main effect on RKN reproduction than found in our previous study, which lends further support to evidence of epistasis with qMi-C11 in imparting RKN resistance in the Auburn 623RNR source. The locus qMi-C14 was fine-mapped with the addition of 16 newly developed markers. By using the reference genome sequence of G. raimondii, we identified 20 candidate genes encoding disease resistance protein homologs in the newly defined 2.3 Mb region flanked by two SSR markers. Resequencing of an RKN resistant and susceptible G. hirsutum germplasm revealed non-synonymous mutations in only four of the coding regions of candidate genes, and these four genes are consequently of high interest. CONCLUSIONS: Our mapping results validated the effects of the qMi-C14 resistance locus, delimiting the QTL to a smaller region, and identified tightly linked SSR markers to improve the efficiency of marker-assisted selection. The candidate genes identified warrant functional studies that will help in identifying and characterizing the actual qMi-C14 defense gene(s) against root-knot nematodes.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Gossypium/genética , Gossypium/parasitología , Interacciones Huésped-Parásitos/genética , Nematodos , Sitios de Carácter Cuantitativo , Alelos , Animales , Cromosomas de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Repeticiones de Microsatélite , Fenotipo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple
17.
Am J Bot ; 103(4): 719-29, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27056931

RESUMEN

PREMISE OF THE STUDY: Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. METHODS: We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. KEY RESULTS: Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. CONCLUSIONS: Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement.


Asunto(s)
Gossypium/genética , Endogamia , Poliploidía , Alelos , Cromatina/metabolismo , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Sitios Genéticos , Genoma de Planta , Genotipo
18.
BMC Public Health ; 16(1): 824, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538986

RESUMEN

BACKGROUND: Each year an estimated 390 million dengue infections occur worldwide. In Malaysia, dengue is a growing public health concern but estimate of its disease burden remains uncertain. We compared the urban-rural difference of dengue seroprevalence and determined age-specific dengue seroprevalence in Malaysia. METHODS: We undertook analysis on 11,821 subjects from six seroprevalence surveys conducted in Malaysia between 2001 and 2013, which composed of five urban and two rural series. RESULTS: Prevalence of dengue increased with age in both urban and rural locations in Malaysia, which exceeded 90 % among those aged 70 years or beyond. The age-specific rates of the 5 urban surveys overlapped without clear separation among them, while prevalence was lower in younger subjects in rural series than in urban series, the trend reversed in older subjects. There were no differences in the seroprevalence by gender, ethnicity or region. Poisson regression model confirmed the prevalence have not changed in urban areas since 2001 but in rural areas, there was a significant positive time trend such that by year 2008, rural prevalence was as high as in urban areas. CONCLUSION: Dengue seroprevalence has stabilized but persisted at a high level in urban areas since 2001, and is fast stabilizing in rural areas at the same high urban levels by 2008. The cumulative seroprevalence of dengue exceeds 90 % by the age of 70 years, which translates into 16.5 million people or 55 % of the total population in Malaysia, being infected by dengue by 2013.


Asunto(s)
Dengue/epidemiología , Población Rural/estadística & datos numéricos , Población Urbana/estadística & datos numéricos , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Distribución de Poisson , Prevalencia , Análisis de Regresión , Estudios Seroepidemiológicos , Adulto Joven
19.
Development ; 138(3): 487-94, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205793

RESUMEN

Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.


Asunto(s)
Cilios/metabolismo , Oído Interno/citología , Células Ciliadas Auditivas/metabolismo , Membrana Otolítica/metabolismo , Animales , Animales Modificados Genéticamente , Epigenómica , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hibridación in Situ , Canales Iónicos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía por Video , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Theor Appl Genet ; 127(6): 1343-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728014

RESUMEN

KEY MESSAGE: We report a second major QTL for root-knot nematode resistance in the highly resistant Upland cotton line M-120RNR and show epistasis between two resistant QTLs with different mechanisms conferring resistance. In an earlier study, we identified a major QTL on Chromosome 11 associated with resistance to root-knot nematode in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Herein, we re-evaluated the genetics of the resistance to root-knot nematode in the M-120 RNR × Pima S-6 population by linkage mapping using recently published SSR markers. The QTL analysis detected two regions significantly associated with the resistance phenotype. In addition to the QTL previously identified on Chromosome 11 (qMi-C11), a major QTL was identified on Chromosome 14 (qMi-C14). The resistance locus on qMi-C11 originated from the Clevewilt parent, while the qMi-C14 locus originated from the other resistant parent, Mexico Wild Jack Jones. The qMi-C14 locus had logarithms of odds score of 17 and accounted for 45 % of the total phenotype variation in egg production. It was also associated with galling index, but the percent variation explained was only 6 %, suggesting that the qMi-C11 locus had a much stronger effect on root gall suppression than egg production, while the qMi-C14 locus had a stronger effect on egg production than galling. The results also suggest that the transgressive segregation observed in the development of Auburn 623 RNR was due to the pyramiding of at least two main effect QTLs as well as an additive-by-additive epistatic effects between the two resistant loci. The SSRs markers tightly linked to the qMi-C11 and qMi-C14 loci will greatly facilitate the improvement of RKN resistance in cotton via marker-assisted breeding.


Asunto(s)
Gossypium/genética , Nematodos/fisiología , Sitios de Carácter Cuantitativo , Estrés Fisiológico/genética , Animales , Mapeo Cromosómico , Cromosomas de las Plantas , Epistasis Genética , Gossypium/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA