Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269859

RESUMEN

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Ceramidas , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ceramidas/metabolismo , Cromatografía Liquida , Estudio de Asociación del Genoma Completo , Lactosilceramidos , Metaboloma , Ratones Noqueados , Esfingomielinas , Espectrometría de Masas en Tándem
2.
Anal Chem ; 94(3): 1760-1768, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35026111

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is the main workhorse of metabolomics owing to its high degree of analytical sensitivity and specificity when measuring diverse chemistry in complex biological samples. LC-MS-based metabolic profiling of human urine, a biofluid of primary interest for clinical and biobank studies, is not widely considered to be compromised by the presence of endogenous interferences and is often accomplished using a simple "dilute-and-shoot" approach. Yet, it is our experience that broad obscuring signals are routinely observed in LC-MS metabolic profiles and represent interferences that lack consideration in the relevant metabolomics literature. In this work, we chromatographically isolated the interfering metabolites from human urine and unambiguously identified them via de novo structure elucidation as two separate proline-containing dipeptides: N,N,N-trimethyl-l-alanine-l-proline betaine (l,l-TMAP) and N,N-dimethyl-l-proline-l-proline betaine (l,l-DMPP), the latter reported here for the first time. Offline LC-MS/MS, magnetic resonance mass spectrometry (MRMS), and nuclear magnetic resonance (NMR) spectroscopy were essential components of this workflow for the full chemical and spectroscopic characterization of these metabolites and for establishing the coexistence of cis and trans isomers of both dipeptides in solution. Analysis of these definitive structures highlighted intramolecular ionic interactions as responsible for slow interconversion between these isomeric forms resulting in their unusually broad elution profiles. Proposed mitigation strategies, aimed at increasing the quality of LC-MS-based urine metabolomics data, include modification of column temperature and mobile-phase pH to reduce the chromatographic footprint of these dipeptides, thereby reducing their interfering effect on the underlying metabolic profiles. Alternatively, sample dilution and internal standardization methods may be employed to reduce or account for the observed effects of ionization suppression on the metabolic profile.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
3.
Anal Chem ; 94(14): 5493-5503, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35360896

RESUMEN

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.


Asunto(s)
Metabolómica , Biomarcadores/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos
4.
Bioinformatics ; 37(24): 4886-4888, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34125879

RESUMEN

SUMMARY: Untargeted liquid chromatography-mass spectrometry (LC-MS) profiling assays are capable of measuring thousands of chemical compounds in a single sample, but unreliable feature extraction and metabolite identification remain considerable barriers to their interpretation and usefulness. peakPantheR (Peak Picking and ANnoTation of High-resolution Experiments in R) is an R package for the targeted extraction and integration of annotated features from LC-MS profiling experiments. It takes advantage of chromatographic and spectral databases and prior information of sample matrix composition to generate annotated and interpretable metabolic phenotypic datasets and power workflows for real-time data quality assessment. AVAILABILITY AND IMPLEMENTATION: peakPantheR is available via Bioconductor (https://bioconductor.org/packages/peakPantheR/). Documentation and worked examples are available at https://phenomecentre.github.io/peakPantheR.github.io/ and https://github.com/phenomecentre/metabotyping-dementia-urine. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica , Documentación
5.
J Nutr ; 152(11): 2358-2366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774102

RESUMEN

BACKGROUND: South Asians are at higher risk for cardiometabolic disease than many other racial/ethnic minority groups. Diet patterns in US South Asians have unique components associated with cardiometabolic disease. OBJECTIVES: We aimed to characterize the metabolites associated with 3 representative diet patterns. METHODS: We included 722 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort study aged 40-84 y without known cardiovascular disease. Fasting serum specimens and diet and demographic questionnaires were collected at baseline and diet patterns previously generated through principal components analysis. LC-MS-based untargeted metabolomic and lipidomic analysis was conducted with targeted integration of known metabolite and lipid signals. Linear regression models of diet pattern factor score and log-transformed metabolites adjusted for age, sex, caloric intake, and BMI and adjusted for multiple comparisons were performed, followed by elastic net linear regression of significant metabolites. RESULTS: There were 443 metabolites of known identity extracted from the profiling data. The "animal protein" diet pattern was associated with 61 metabolites and lipids, including glycerophospholipids phosphatidylethanolamine PE(O-16:1/20:4) and/or PE(P-16:0/20:4) (ß: 0.13; 95% CI: 0.11, 0.14) and N-acyl phosphatidylethanolamines (NAPEs) NAPE(O-18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18:0) (ß: 0.13; 95% CI: 0.11, 0.14), lysophosphatidylinositol (LPI) (22:6/0:0) (ß: 0.14; 95% CI: 0.12, 0.17), and fatty acid (FA) (22:6) (ß: 0.15; 95% CI: 0.13, 0.17). The "fried snacks, sweets, high-fat dairy" pattern was associated with 12 lipids, including PC(16:0/22:6) (ß: -0.08; 95% CI: -0.09, -0.06) and FA (22:6) (ß: 0.14; 95% CI: -0.17, -0.10). The "fruits, vegetables, nuts, and legumes" pattern was associated with 5 metabolites including proline betaine (ß: 0.17; 95% CI: 0.09, 0.25) (P < 0.0002). CONCLUSIONS: Three predominant dietary patterns in US South Asians are associated with circulating metabolites differentiated by lipids including glycerophospholipids and PUFAs and the amino acid proline betaine.


Asunto(s)
Enfermedades Cardiovasculares , Etnicidad , Humanos , Estados Unidos , Estudios de Cohortes , Personas del Sur de Asia , Grupos Minoritarios , Dieta , Verduras , Lípidos
6.
Anal Chem ; 93(4): 1924-1933, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448796

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is a powerful and widely used technique for measuring the abundance of chemical species in living systems. Its sensitivity, analytical specificity, and direct applicability to biofluids and tissue extracts impart great promise for the discovery and mechanistic characterization of biomarker panels for disease detection, health monitoring, patient stratification, and treatment personalization. Global metabolic profiling applications yield complex data sets consisting of multiple feature measurements for each chemical species observed. While this multiplicity can be useful in deriving enhanced analytical specificity and chemical identities from LC-MS data, data set inflation and quantitative imprecision among related features is problematic for statistical analyses and interpretation. This Perspective provides a critical evaluation of global profiling data fidelity with respect to measurement linearity and the quantitative response variation observed among components of the spectra. These elements of data quality are widely overlooked in untargeted metabolomics yet essential for the generation of data that accurately reflect the metabolome. Advanced feature filtering informed by linear range estimation and analyte response factor assessment is advocated as an attainable means of controlling LC-MS data quality in global profiling studies and exemplified herein at both the feature and data set level.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Metabolómica/normas , Control de Calidad , Metaboloma , Transcriptoma
7.
Anal Chem ; 93(12): 4995-5000, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33733737

RESUMEN

Small Molecule Enhancement SpectroscopY (SMolESY) was employed to develop a unique and fully automated computational solution for the assignment and integration of 1H nuclear magnetic resonance (NMR) signals from metabolites in challenging matrices containing macromolecules (herein blood products). Sensitive and reliable quantitation is provided by instant signal deconvolution and straightforward integration bolstered by spectral resolution enhancement and macromolecular signal suppression. The approach is highly efficient, requiring only standard one-dimensional 1H NMR spectra and avoiding the need for sample preprocessing, complex deconvolution, and spectral baseline fitting. The performance of the algorithm, developed using >4000 NMR serum and plasma spectra, was evaluated using an additional >8800 spectra, yielding an assignment accuracy greater than 99.5% for all 22 metabolites targeted. Further validation of its quantitation capabilities illustrated a reliable performance among challenging phenotypes. The simplicity and complete automation of the approach support the application of NMR-based metabolite panel measurements in clinical and population screening applications.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Automatización , Espectroscopía de Resonancia Magnética , Metabolómica , Espectroscopía de Protones por Resonancia Magnética
8.
Eur Heart J ; 40(34): 2883-2896, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31102408

RESUMEN

AIMS: To characterize serum metabolic signatures associated with atherosclerosis in the coronary or carotid arteries and subsequently their association with incident cardiovascular disease (CVD). METHODS AND RESULTS: We used untargeted one-dimensional (1D) serum metabolic profiling by proton nuclear magnetic resonance spectroscopy (1H NMR) among 3867 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), with replication among 3569 participants from the Rotterdam and LOLIPOP studies. Atherosclerosis was assessed by coronary artery calcium (CAC) and carotid intima-media thickness (IMT). We used multivariable linear regression to evaluate associations between NMR features and atherosclerosis accounting for multiplicity of comparisons. We then examined associations between metabolites associated with atherosclerosis and incident CVD available in MESA and Rotterdam and explored molecular networks through bioinformatics analyses. Overall, 30 1H NMR measured metabolites were associated with CAC and/or IMT, P = 1.3 × 10-14 to 1.0 × 10-6 (discovery) and P = 5.6 × 10-10 to 1.1 × 10-2 (replication). These associations were substantially attenuated after adjustment for conventional cardiovascular risk factors. Metabolites associated with atherosclerosis revealed disturbances in lipid and carbohydrate metabolism, branched chain, and aromatic amino acid metabolism, as well as oxidative stress and inflammatory pathways. Analyses of incident CVD events showed inverse associations with creatine, creatinine, and phenylalanine, and direct associations with mannose, acetaminophen-glucuronide, and lactate as well as apolipoprotein B (P < 0.05). CONCLUSION: Metabolites associated with atherosclerosis were largely consistent between the two vascular beds (coronary and carotid arteries) and predominantly tag pathways that overlap with the known cardiovascular risk factors. We present an integrated systems network that highlights a series of inter-connected pathways underlying atherosclerosis.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades de las Arterias Carótidas/complicaciones , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Adulto , Anciano , Enfermedades Cardiovasculares/sangre , Enfermedades de las Arterias Carótidas/sangre , Enfermedad de la Arteria Coronaria/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Espectroscopía de Protones por Resonancia Magnética
10.
Anal Chem ; 91(14): 8873-8882, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31188566

RESUMEN

Annotation and identification of metabolite biomarkers is critical for their biological interpretation in metabolic phenotyping studies, presenting a significant bottleneck in the successful implementation of untargeted metabolomics. Here, a systematic multistep protocol was developed for the purification and de novo structural elucidation of urinary metabolites. The protocol is most suited for instances where structure elucidation and metabolite annotation are critical for the downstream biological interpretation of metabolic phenotyping studies. First, a bulk urine pool was desalted using ion-exchange resins enabling large-scale fractionation using precise iterations of analytical scale chromatography. Primary urine fractions were collected and assembled into a "fraction bank" suitable for long-term laboratory storage. Secondary and tertiary fractionations exploited differences in selectivity across a range of reversed-phase chemistries, achieving the purification of metabolites of interest yielding an amount of material suitable for chemical characterization. To exemplify the application of the systematic workflow in a diverse set of cases, four metabolites with a range of physicochemical properties were selected and purified from urine and subjected to chemical formula and structure elucidation by respective magnetic resonance mass spectrometry (MRMS) and NMR analyses. Their structures were fully assigned as tetrahydropentoxyline, indole-3-acetic-acid-O-glucuronide, p-cresol glucuronide, and pregnanediol-3-glucuronide. Unused effluent was collected, dried, and returned to the fraction bank, demonstrating the viability of the system for repeat use in metabolite annotation with a high degree of efficiency.


Asunto(s)
Biomarcadores/orina , Metabolómica/métodos , Orina/química , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Metaboloma
11.
Faraday Discuss ; 218(0): 395-416, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31116193

RESUMEN

Metabolite identification and annotation procedures are necessary for the discovery of biomarkers indicative of phenotypes or disease states, but these processes can be bottlenecked by the sheer complexity of biofluids containing thousands of different compounds. Here we describe low-cost novel SPE-NMR protocols utilising different cartridges and conditions, on both natural and artificial urine mixtures, which produce unique retention profiles useful for metabolic profiling. We find that different SPE methods applied to biofluids such as urine can be used to selectively retain metabolites based on compound taxonomy or other key functional groups, reducing peak overlap through concentration and fractionation of unknowns and hence promising greater control over the metabolite annotation/identification process.


Asunto(s)
Biomarcadores/metabolismo , Biomarcadores/orina , Resonancia Magnética Nuclear Biomolecular , Extracción en Fase Sólida , Orina/química , Voluntarios Sanos , Humanos , Polietilenglicoles/análisis
12.
J Proteome Res ; 17(10): 3492-3502, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30183320

RESUMEN

The application of metabolic phenotyping to epidemiological studies involving thousands of biofluid samples presents a challenge for the selection of analytical platforms that meet the requirements of high-throughput precision analysis and cost-effectiveness. Here direct infusion-nanoelectrospray (DI-nESI) was compared with an ultra-performance liquid chromatography (UPLC)-high-resolution mass spectrometry (HRMS) method for metabolic profiling of an exemplary set of 132 human urine samples from a large epidemiological cohort. Both methods were developed and optimized to allow the simultaneous collection of high-resolution urinary metabolic profiles and quantitative data for a selected panel of 35 metabolites. The total run time for measuring the sample set in both polarities by UPLC-HRMS was 5 days compared with 9 h by DI-nESI-HRMS. To compare the classification ability of the two MS methods, we performed exploratory analysis of the full-scan HRMS profiles to detect sex-related differences in biochemical composition. Although metabolite identification is less specific in DI-nESI-HRMS, the significant features responsible for discrimination between sexes were mostly the same in both MS-based platforms. Using the quantitative data, we showed that 10 metabolites have strong correlation (Pearson's r > 0.9 and Passing-Bablok regression slope of 0.8-1.3) and good agreement assessed by Bland-Altman plots between UPLC-HRMS and DI-nESI-HRMS and thus can be measured using a cheaper and less sample- and time-consuming method. A further twenty metabolites showed acceptable correlation between the two methods with only five metabolites showing weak correlation (Pearson's  r < 0.4) and poor agreement due to the overestimation of the results by DI-nESI-HRMS.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metaboloma , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Alanina/orina , Creatina/orina , Creatinina/orina , Femenino , Humanos , Hipertensión/metabolismo , Hipertensión/orina , Ácido Láctico/orina , Masculino , Persona de Mediana Edad , Nanotecnología/métodos , Reproducibilidad de los Resultados
13.
J Proteome Res ; 16(4): 1646-1658, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28245357

RESUMEN

Large-scale metabolic profiling requires the development of novel economical high-throughput analytical methods to facilitate characterization of systemic metabolic variation in population phenotypes. We report a fit-for-purpose direct infusion nanoelectrospray high-resolution mass spectrometry (DI-nESI-HRMS) method with time-of-flight detection for rapid targeted parallel analysis of over 40 urinary metabolites. The newly developed 2 min infusion method requires <10 µL of urine sample and generates high-resolution MS profiles in both positive and negative polarities, enabling further data mining and relative quantification of hundreds of metabolites. Here we present optimization of the DI-nESI-HRMS method in a detailed step-by-step guide and provide a workflow with rigorous quality assessment for large-scale studies. We demonstrate for the first time the application of the method for urinary metabolic profiling in human epidemiological investigations. Implementation of the presented DI-nESI-HRMS method enabled cost-efficient analysis of >10 000 24 h urine samples from the INTERMAP study in 12 weeks and >2200 spot urine samples from the ARIC study in <3 weeks with the required sensitivity and accuracy. We illustrate the application of the technique by characterizing the differences in metabolic phenotypes of the USA and Japanese population from the INTERMAP study.


Asunto(s)
Espectrometría de Masas/métodos , Metaboloma/genética , Epidemiología Molecular/métodos , Orina/química , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Metabolómica/métodos , Nanotecnología/métodos
14.
Anal Chem ; 88(11): 5742-51, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27116471

RESUMEN

A rapid gradient microbore ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed to provide a high-throughput analytical platform for the metabolic phenotyping of urine from large sample cohorts. The rapid microbore metabolic profiling (RAMMP) approach was based on scaling a conventional reversed-phase UPLC-MS method for urinary profiling from 2.1 mm × 100 mm columns to 1 mm × 50 mm columns, increasing the linear velocity of the solvent, and decreasing the gradient time to provide an analysis time of 2.5 min/sample. Comparison showed that conventional UPLC-MS and rapid gradient approaches provided peak capacities of 150 and 50, respectively, with the conventional method detecting approximately 19 000 features compared to the ∼6 000 found using the rapid gradient method. Similar levels of repeatability were seen for both methods. Despite the reduced peak capacity and the reduction in ions detected, the RAMMP method was able to achieve similar levels of group discrimination as conventional UPLC-MS when applied to rat urine samples obtained from investigative studies on the effects of acute 2-bromophenol and chronic acetaminophen administration. When compared to a direct infusion MS method of similar analysis time the RAMMP method provided superior selectivity. The RAMMP approach provides a robust and sensitive method that is well suited to high-throughput metabonomic analysis of complex mixtures such as urine combined with a 5-fold reduction in analysis time compared with the conventional UPLC-MS method.


Asunto(s)
Acetaminofén/orina , Ensayos Analíticos de Alto Rendimiento , Fenoles/orina , Acetaminofén/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Metaboloma , Metabolómica , Fenoles/metabolismo , Fenotipo , Ratas
15.
J Am Chem Soc ; 135(5): 1853-63, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23360075

RESUMEN

The association constants for a family of 96 closely related zinc porphyrin-pyridine ligand complexes have been measured in two different solvents, toluene and 1,1,2,2-tetrachloroethane (TCE). The zinc porphyrin receptors are equipped with phenol side arms, which can form intramolecular H-bonds with ester or amide side arms on the pyridine ligands. These association constants were used to construct 64 chemical double mutant cycles, which measure the free energy contributions of intramolecular H-bonding interactions to the overall stability of the complexes. Measurement of association constants for the corresponding intermolecular H-bonding interactions allowed determination of the effective molarities (EM) for the intramolecular interactions. Comparison of ligands that feature amide H-bond acceptors and ester H-bonds at identical sites on the ligand framework show that the values of EM are practically identical. Similarly, the values of EM are practically identical in toluene and in TCE. However, comparison of two ligand series that differ by one degree of torsional freedom shows that the values of EM for the flexible ligands are an order of magnitude lower than for the corresponding rigid ligands. This observation holds for a range of different supramolecular architectures with different degrees of receptor-ligand complementarity and suggests that in general the cost of freezing a rotor in supramolecular complexes is of the order of 5 kJ/mol.


Asunto(s)
Metaloporfirinas/química , Piridinas/química , Zinc/química , Enlace de Hidrógeno , Ligandos , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Metaloporfirinas/síntesis química , Modelos Moleculares , Conformación Molecular
16.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444640

RESUMEN

Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.

17.
Nat Commun ; 14(1): 1752, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990978

RESUMEN

Metabolomics-driven discoveries of biological samples remain hampered by the grand challenge of metabolite annotation and identification. Only few metabolites have an annotated spectrum in spectral libraries; hence, searching only for exact library matches generally returns a few hits. An attractive alternative is searching for so-called analogues as a starting point for structural annotations; analogues are library molecules which are not exact matches but display a high chemical similarity. However, current analogue search implementations are not yet very reliable and relatively slow. Here, we present MS2Query, a machine learning-based tool that integrates mass spectral embedding-based chemical similarity predictors (Spec2Vec and MS2Deepscore) as well as detected precursor masses to rank potential analogues and exact matches. Benchmarking MS2Query on reference mass spectra and experimental case studies demonstrate improved reliability and scalability. Thereby, MS2Query offers exciting opportunities to further increase the annotation rate of metabolomics profiles of complex metabolite mixtures and to discover new biology.


Asunto(s)
Aprendizaje Automático , Metabolómica , Reproducibilidad de los Resultados , Espectrometría de Masas , Mezclas Complejas
18.
ACR Open Rheumatol ; 5(11): 583-593, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37736702

RESUMEN

OBJECTIVE: We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT). METHODS: This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance. RESULTS: Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02). CONCLUSION: Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.

19.
Clin Transl Med ; 13(1): e1152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36588088

RESUMEN

BACKGROUND: Gut-brain axis is widely implicated in the pathophysiology of Parkinson's disease (PD). We take an integrated approach to considering the gut as a target for disease-modifying intervention, using continuous measurements of disease facets irrespective of diagnostic divide. METHODS: We characterised 77 participants with diagnosed-PD, 113 without, by dietary/exogenous substance intake, faecal metabolome, intestinal inflammation, serum cytokines/chemokines, clinical phenotype including colonic transit time. Complete-linkage hierarchical cluster analysis of metabolites discriminant for PD-status was performed. RESULTS: Longer colonic transit was linked to deficits in faecal short-chain-fatty acids outside PD, to a 'tryptophan-containing metabolite cluster' overall. Phenotypic cluster analysis aggregated colonic transit with brady/hypokinesia, tremor, sleep disorder and dysosmia, each individually associated with tryptophan-cluster deficit. Overall, a faster pulse was associated with deficits in a metabolite cluster including benzoic acid and an imidazole-ring compound (anti-fungals) and vitamin B3 (anti-inflammatory) and with higher serum CCL20 (chemotactic for lymphocytes/dendritic cells towards mucosal epithelium). The faster pulse in PD was irrespective of postural hypotension. The benzoic acid-cluster deficit was linked to (well-recognised) lower caffeine and alcohol intakes, tryptophan-cluster deficit to higher maltose intake. Free-sugar intake was increased in PD, maltose intake being 63% higher (p = .001). Faecal calprotectin was 44% (95% CI 5%, 98%) greater in PD [p = .001, adjusted for proton-pump inhibitors (p = .001)], with 16% of PD-probands exceeding a cut-point for clinically significant inflammation compatible with inflammatory bowel disease. Higher maltose intake was associated with exceeding this calprotectin cut-point. CONCLUSIONS: Emerging picture is of (i) clinical phenotype being described by deficits in microbial metabolites essential to gut health; (ii) intestinal inflammation; (iii) a systemic inflammatory response syndrome.


Asunto(s)
Enfermedad de Parkinson , Humanos , Triptófano , Maltosa , Inflamación , Dieta , Complejo de Antígeno L1 de Leucocito/análisis , Benzoatos
20.
Org Biomol Chem ; 10(30): 6022-31, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22580501

RESUMEN

Free energy contributions due to intramolecular phosphonate diester-phenol H-bonds have been measured for 20 different supramolecular architectures in cyclohexanone solution. High throughput UV/Vis titrations were used in combination with chemical double mutant cycles to dissect out the contributions of different functional group interactions to the stabilities of over 100 different zinc porphyrin-pyridine ligand complexes. These complexes have previously been characterised in toluene and in 1,1,2,2-tetrachloroethane (TCE) solution. Intramolecular ester-phenol H-bonds that were measured in these less polar solvents are too weak to be detected in cyclohexanone, which is a more competitive solvent. The stability of the intermolecular phosphonate diester-phenol H-bond in cyclohexanone is an order of magnitude lower than in TCE and two orders of magnitude lower than in toluene. As a consequence, only seven of the twenty intramolecular phosphonate diester-phenol interactions that were previously measured in toluene and TCE could be detected in cyclohexanone. The effective molarities (EM) for these intramolecular interactions are different in all three solvents. Determination of the EM accounts for solvent effects on the strengths of the individual H-bonding interactions and the zinc porphyrin-pyridine coordination bond, so the variation in EM with solvent implies that differences in the solvation shells make significant contributions to the overall stabilities of the complexes. The results suggest that steric effects lead to desolvation of bulky polar ligands. This increases the EM values measured in TCE, because ligands that fail to replace the strong interactions made with this solvent are unusually weakly bound compared with ligands that make intramolecular H-bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA