Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Pharmacol Pharm Sci ; 2023: 8127695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090376

RESUMEN

Breast cancer is the most common cancer diagnosed in women, and in 2020, there were 684, 996 deaths due to this disease. Epidermal growth factor receptors (EGFRs) and their respective ligands have been blamed for the pathogenesis and resistance to treatment in specific breast cancer cases. With EGFR having four homologues: EGFR1, EGFR2, EGFR3, and EGFR4, in-depth understanding of EGFR biology led to the discovery of small-molecule inhibitors and antibodies against this receptor. Gefitinib (GEF), a tyrosine kinase inhibitor of EGFR1, possesses a vast potential for treatment against breast cancer and is supported by a multiplicity of experiments. Unfortunately, in clinical trials, GEF did not show the outcomes expected with complete response and disease progress. This is due to incomplete understanding of the molecular mechanisms involved in EGFR signaling and endocrine sensitivity. Hence, additional in-depth experiments are needed regarding various molecular pathways and crosstalk pathways to comprehend GEF's action mechanism thoroughly in breast cancer patients. In this review, the role of EGFR in the development and pathogenesis of breast cancer and the pharmacokinetics and pharmacotherapy of GEF for the treatment of breast cancer have been elaborated. Nanomedicines synthesized with GEF have shown positive experimental response, paving a promising path for GEF against breast cancer.

2.
J Anim Sci Technol ; 63(4): 693-724, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34447949

RESUMEN

The in-vitro meat is a novel concept in food biotechnology comprising field of tissue engineering and cellular agriculture. It involves production of edible biomass by in-vitro culture of stem cells harvested from the muscle of live animals by self-organizing or scaffolding methodology. It is considered as efficient, environmental friendly, better ensuring public safety and nutritional security, as well as ethical way of producing meat. Source of stem cells, media ingredients, supply of large size bioreactors, skilled manpower, sanitary requirements, production of products with similar sensory and textural attributes as of conventional meat, consumer acceptance, and proper set up of regulatory framework are challenges faced in commercialization and consumer acceptance of in-vitro meat. To realize any perceivable change in various socio-economic and environmental spheres, the technology should be commercialized and should be cost-effective as conventional meat and widely accepted among consumers. The new challenges of increasing demand of meat with the increasing population could be fulfill by the establishment of in-vitro meat production at large scale and its popularization. The adoption of in-vitro meat production at an industrial scale will lead to self-sufficiency in the developed world.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34443820

RESUMEN

Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA