Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12379-12389, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38961056

RESUMEN

Accumulating evidence linked extreme temperature events (ETEs) and fine particulate matter (PM2.5) to cardiometabolic multimorbidity (CMM); however, it remained unknown if and how ETEs and PM2.5 interact to trigger CMM occurrence. Merging four Chinese national cohorts with 64,140 free-CMM adults, we provided strong evidence among ETEs, PM2.5 exposure, and CMM occurrence. Performing Cox hazards regression models along with additive interaction analyses, we found that the hazards ratio (HRs) of CMM occurrence associated with heatwave and cold spell were 1.006-1.019 and 1.063-1.091, respectively. Each 10 µg/m3 increment of PM2.5 concentration was associated with 17.9% (95% confidence interval: 13.9-22.0%) increased risk of CMM. Similar adverse effects were also found among PM2.5 constituents of nitrate, organic matter, sulfate, ammonium, and black carbon. We observed a synergetic interaction of heatwave and PM2.5 pollution on CMM occurrence with relative excess risk due to the interaction of 0.999 (0.663-1.334). Our study provides novel evidence that both ETEs and PM2.5 exposure were positively associated with CMM occurrence, and the heatwave interacts synergistically with PM2.5 to trigger CMM.


Asunto(s)
Material Particulado , Humanos , Estudios de Cohortes , Multimorbilidad , Contaminantes Atmosféricos , Masculino , Femenino , China/epidemiología , Persona de Mediana Edad , Exposición a Riesgos Ambientales
2.
Immunopharmacol Immunotoxicol ; 46(2): 172-182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174705

RESUMEN

OBJECTIVE: The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS: Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS: OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1ß, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION: THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Masculino , Humanos , Femenino , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Semen/metabolismo , Ciclofosfamida/efectos adversos , Fertilidad , Espermatozoides/metabolismo , Pirrolidinonas
3.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153154

RESUMEN

Natural gas hydrates, mainly existing in permafrost and on the seabed, are expected to be a new energy source with great potential. The exploitation technology of natural gas hydrates is one of the main focuses of hydrate-related studies. In this study, a large-size liquid aqueous solution wrapping a methane hydrate system was established and molecular dynamics simulations were used to investigate the phase equilibrium conditions of methane hydrate at different methane concentrations and interfacial geometries. It is found that the methane concentration of a solution significantly affects the phase equilibrium of methane hydrates. Different methane concentrations at the same temperature and pressure can lead to hydrate formation or decomposition. At the same temperature and pressure, in a system reaching equilibrium, the size of spherical hydrate clusters is coupled to the solution concentration, which is proportional to the Laplace pressure at the solid-liquid interface. Lower solution concentrations reduce the phase equilibrium temperature of methane hydrates at the same pressure; as the concentration increases, the phase equilibrium temperature gradually approaches the actual phase equilibrium temperature. In addition, the interfacial geometry of hydrates affects the thermodynamic stability of hydrates. The spherical hydrate particles have the highest stability for the same volume. Through this study, we provide a stronger foundation to understand the principles driving hydrate formation/dissociation relevant to the exploitation of methane hydrates.

4.
Adv Sci (Weinh) ; 11(31): e2400174, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889298

RESUMEN

Perovskite oxides and organic-inorganic halide perovskite materials, with numerous fascinating features, have been subjected to extensive studies. Most of the properties of perovskite materials are dependence on their ferroelectricity that denoted by remanent polarization (Pr). Thus, the increase of Pr in perovskite films is mainly an effort in material physics. At present, commonplace improvement schemes, i.e., controlling material crystallinity, and post-annealing by using a high-temperature process, are normally used. However, a simpler and temporal strategy for Pr improvement is always unavailable to perovskite material researchers. In this study, an organic coating layer, low-temperature, and vacuum-free strategy is proposed to improve the Pr, directly increasing the Pr from 36 to 56 µC cm-2. Further study finds that the increased Pr originates from the suppression of the oxygen defects and Ti defects. This organic coating layer strategy for passivating the defects may open a new way for the preparation of higher-performance and cost-effective perovskite products, further improving its prospective for application in the electron devices field.

5.
Adv Sci (Weinh) ; 11(12): e2306993, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233212

RESUMEN

Passivating contactsin heterojunction (HJ) solar cells have shown great potential in reducing recombination losses, and thereby achieving high power conversion efficiencies in photovoltaic devices. In this direction, carbon nanomaterials have emerged as a promising option for carbon/silicon (C/Si) HJsolar cells due to their tunable band structure, wide spectral absorption, high carrier mobility, and properties such as multiple exciton generation. However, the current limitations in efficiency and active area have hindered the industrialization of these devices. In this review, they examine the progress made in overcoming these constraints and discuss the prospect of achieving high power conversion efficiency (PCE) C/Si HJ devices. A C/Si HJ solar cell is also designed by introducing an innovative interface passivation strategy to further boost the PCE and accelerate the large area preparationof C/Si devices. The physical principle, device design scheme, and performanceoptimization approaches of this passivated C/Si HJ cells are discussed. Additionally, they outline potential future pathways and directions for C/Si HJ devices, including a reduction in their cost to manufacture and their incorporation intotandem solar cells. As such, this review aims to facilitate a deeperunderstanding of C/Si HJ solar cells and provide guidance for their further development.

6.
Adv Sci (Weinh) ; 11(21): e2401070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526150

RESUMEN

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA