Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(4): 612-624, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928415

RESUMEN

Gamma delta (γδ) T cells reside within human tissues including tumors, but their function in mediating antitumor responses to immune checkpoint inhibition is unknown. Here we show that kidney cancers are infiltrated by Vδ2- γδ T cells, with equivalent representation of Vδ1+ and Vδ1- cells, that are distinct from γδ T cells found in normal human tissues. These tumor-resident Vδ2- T cells can express the transcriptional program of exhausted αß CD8+ T cells as well as canonical markers of terminal T-cell exhaustion including PD-1, TIGIT and TIM-3. Although Vδ2- γδ T cells have reduced IL-2 production, they retain expression of cytolytic effector molecules and co-stimulatory receptors such as 4-1BB. Exhausted Vδ2- γδ T cells are composed of three distinct populations that lack TCF7, are clonally expanded and express cytotoxic molecules and multiple Vδ2- T-cell receptors. Human tumor-derived Vδ2- γδ T cells maintain cytotoxic function and pro-inflammatory cytokine secretion in vitro. The transcriptional program of Vδ2- T cells in pretreatment tumor biopsies was used to predict subsequent clinical responses to PD-1 blockade in patients with cancer. Thus, Vδ2- γδ T cells within the tumor microenvironment can contribute to antitumor efficacy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Renales , Humanos , Linfocitos T CD8-positivos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Renales/metabolismo , Subgrupos de Linfocitos T , Microambiente Tumoral
2.
Cell ; 177(4): 1050-1066.e14, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982596

RESUMEN

Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.


Asunto(s)
Microscopía/métodos , Imagen Molecular/métodos , Neuroimagen/métodos , Animales , Encéfalo/fisiología , Calcio/metabolismo , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Análisis de la Célula Individual/métodos
3.
Nature ; 588(7839): 699-704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208952

RESUMEN

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Asunto(s)
Cisteína/metabolismo , Lisosomas/metabolismo , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte Biológico , Fraccionamiento Celular , Línea Celular , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Fibroblastos , Humanos , Melaninas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Oxidación-Reducción
4.
J Biol Chem ; 299(5): 104691, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037306

RESUMEN

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Mitofagia , Proteínas Quinasas , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ferritinas , Hierro/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nat Methods ; 18(9): 1103-1111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34462592

RESUMEN

Two-photon microscopy has enabled high-resolution imaging of neuroactivity at depth within scattering brain tissue. However, its various realizations have not overcome the tradeoffs between speed and spatiotemporal sampling that would be necessary to enable mesoscale volumetric recording of neuroactivity at cellular resolution and speed compatible with resolving calcium transients. Here, we introduce light beads microscopy (LBM), a scalable and spatiotemporally optimal acquisition approach limited only by fluorescence lifetime, where a set of axially separated and temporally distinct foci record the entire axial imaging range near-simultaneously, enabling volumetric recording at 1.41 × 108 voxels per second. Using LBM, we demonstrate mesoscopic and volumetric imaging at multiple scales in the mouse cortex, including cellular-resolution recordings within ~3 × 5 × 0.5 mm volumes containing >200,000 neurons at ~5 Hz and recordings of populations of ~1 million neurons within ~5.4 × 6 × 0.5 mm volumes at ~2 Hz, as well as higher speed (9.6 Hz) subcellular-resolution volumetric recordings. LBM provides an opportunity for discovering the neurocomputations underlying cortex-wide encoding and processing of information in the mammalian brain.


Asunto(s)
Corteza Cerebral/citología , Microscopía/métodos , Animales , Calcio/análisis , Femenino , Rayos Láser , Masculino , Ratones , Ratones Endogámicos C57BL , Microesferas , Neuronas/citología
6.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148348

RESUMEN

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Femenino , Animales , Ratones , Glucosa/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Cardiomegalia/metabolismo , Hipertensión/complicaciones , Obesidad/complicaciones , Ácidos Grasos/metabolismo , Metabolismo Energético
7.
J Med Virol ; 94(6): 2493-2499, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35199356

RESUMEN

Evidence from clinical trials suggest anti-SARS-CoV-2 monoclonal antibodies (mABs) may reduce coronavirus disease 2019 (COVID-19)-related hospitalizations. The purpose of this study was to assess the real-world impact of mAB administration on COVID-19 hospitalization among patients 65 years or older. This was a retrospective, propensity-matched cohort study that included patients aged 65 years and older who presented to the emergency department (ED) within 10 days of symptom onset of mild to moderate COVID-19 infection. Outcomes were compared between those who did and did not receive mAB therapy. The primary endpoint was the rate of hospitalization for COVID-19 within 30 days of index ED visit. A total of 137 patients receiving mABs were matched to 137 controls. Hospitalization occurred in 2.9% of mAB-treated patients compared to 14.6% of patients of the standard of care (SOC) arm (odds ratio: 0.20 [95% CI: 0.07-0.59]). There were zero intubations and zero deaths compared to 3 (2.2%) and 2 (1.5%) in the SOC group. Among the 223 patients receiving mAB in the overall cohort, adverse drug events occurred in 10 (4.5%). Treatment with mAB therapy for mild to moderate COVID-19 was associated with a substantially reduced risk of hospitalization among patients at least 65 years of age.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anciano , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Antivirales , Estudios de Cohortes , Hospitalización , Humanos , Estudios Retrospectivos , SARS-CoV-2
9.
J Ultrasound Med ; 38(10): 2769-2776, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30843236

RESUMEN

Cryoablation is a safe and effective nonsurgical treatment for breast fibroadenomas (FAs). The treatment response is inversely related to the tumor size, with lesions less than 2 cm showing an optimal response. Ultrasound (US) imaging follow-up of the ablated tumor is recommended at 6-month intervals for 2 years at our institution. Although a decrease in the size of the FA clinically and on US imaging is the expected treatment response, variations can be seen. Knowledge of typical US changes over time is imperative to prevent unnecessary rebiopsy or excision in patients who have undergone cryoablation. We will review the initial patient selection criteria, cryoablation technique, and US findings at regular follow-up intervals after cryoablation of FAs through a series of cases treated at our institution.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Criocirugía/métodos , Fibroadenoma/diagnóstico por imagen , Fibroadenoma/cirugía , Ultrasonografía Mamaria/métodos , Mama/diagnóstico por imagen , Mama/cirugía , Femenino , Humanos , Resultado del Tratamiento
10.
Neurobiol Learn Mem ; 153(Pt B): 144-152, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29477609

RESUMEN

Two experiments with Long-Evans rats examined the potential independence of learning about different features of food reward, namely, "what" reward is to be expected and "when" it will occur. This was examined by investigating the effects of selective reward devaluation upon responding in an instrumental peak timing task in Experiment 1 and by exploring the effects of pre-training lesions targeting the basolateral amygdala (BLA) upon the selective reward devaluation effect and interval timing in a Pavlovian peak timing task in Experiment 2. In both tasks, two stimuli, each 60 s long, signaled that qualitatively distinct rewards (different flavored food pellets) could occur after 20 s. Responding on non-rewarded probe trials displayed the characteristic peak timing function with mean responding gradually increasing and peaking at approximately 20 s before more gradually declining thereafter. One of the rewards was then independently paired repeatedly with LiCl injections in order to devalue it whereas the other reward was unpaired with these injections. In a final set of test sessions in which both stimuli were presented without rewards, it was observed that responding was selectively reduced in the presence of the stimulus signaling the devalued reward compared to the stimulus signaling the still valued reward. Moreover, the timing function was mostly unaltered by this devaluation manipulation. Experiment 2 showed that pre-training BLA lesions abolished this selective reward devaluation effect, but it had no impact on peak timing functions shown by the two stimuli. It appears from these data that learning about "what" and "when" features of reward may entail separate underlying neural systems.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Operante/fisiología , Recompensa , Animales , Extinción Psicológica/fisiología , Femenino , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans , Esquema de Refuerzo
12.
Nano Lett ; 15(10): 6528-34, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26340083

RESUMEN

Graphene oxide (GO) is a layered material comprised of hierarchical features which possess vastly differing characteristic dimensions. GO nanosheets represent the critical hierarchical structure which bridges the length-scale of monolayer and bulk material architectures. In this study, the strength and fracture behavior of GO nanosheets were examined. Under uniaxial loading, the tensile strength of the nanosheets was measured to be as high as 12 ± 4 GPa, which approaches the intrinsic strength of monolayer GO and is orders of magnitude higher than that of bulk GO materials. During mechanical failure, brittle fracture was observed in a highly localized region through the cross-section of the nanosheets without interlayer pull-out. This transition in the failure behavior from interplanar fracture, common for bulk GO, to intraplanar fracture, which dominates failure in monolayer GO, is responsible for the high strength measured in the nanosheets. Molecular dynamics simulations indicate that the elastic release from the propagation of intraplanar cracks initiates global fracture due to interlayer load transmission through hydrogen bond networks within the gallery space of the GO nanosheets. Furthermore, the GO nanosheet strength and stiffness were found to be strongly correlated to the effective volume and thickness of the samples, respectively. These findings help to bridge the understanding of the mechanical behavior of hierarchical GO materials and will ultimately guide the application of this intermediate scale material.

13.
Small ; 10(16): 3267-74, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-24799430

RESUMEN

The relative positioning of gene loci within a mammalian nucleus is non-random and plays a role in gene regulation. Some sub-nuclear structures may represent "hubs" that bring specific genetic loci into close proximity where co-regulatory mechanisms can operate. The identification of loci in proximity to a shared sub-nuclear structure can provide insights into the function of the associated structure, and reveal relationships between the loci sharing a common association. A technique is introduced based on the nano-dissection of DNA from thin sections of cells by high-precision nano-tools operated inside a scanning electron microscope. The ability to dissect and identify gene loci occupying a shared site at a single sub-nuclear structure is demonstrated here for the first time. The technique is applied to the nano-dissection of DNA in vicinity of a single promyelocytic leukemia nuclear body (PML NB), and reveals novel loci from several chromosomes that are confirmed to associate at PML NBs with statistical significance in a cell population. Furthermore, it is demonstrated that pairs of loci from different chromosomes congregate at the same nuclear body. It is proposed that this technique is the first that allows the de novo determination of gene loci associations with single nuclear sub-structures.


Asunto(s)
Núcleo Celular/ultraestructura , ADN/genética , Nanotecnología , Análisis de Secuencia de ADN/métodos , ADN/ultraestructura , Microscopía Electrónica de Rastreo
14.
Cardiovasc Res ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691671

RESUMEN

AIMS: Cardiac energy metabolism is perturbed in ischemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS: C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending (LAD) coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and ß-hydroxybutyrate (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. RESULTS: Mice with heart failure exhibited a 56% drop in ejection fraction which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet no increase in overall cardiac energy production was observed, and instead there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSIONS: We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischemic heart and a decrease in insulin-stimulated glucose oxidation.

15.
Cancer Res Commun ; 4(1): 200-212, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38181044

RESUMEN

Sotigalimab is an agonistic anti-CD40 mAb that can modulate antitumor immune responses. In a phase II clinical trial of sotigalimab combined with neoadjuvant chemoradiation (CRT) in locally advanced esophageal/gastroesophageal junction (E/GEJ) cancer with the primary outcome of efficacy as measured by pathologic complete response (pCR) rate, the combination induced pCR in 38% of treated patients. We investigated the mechanism of action of sotigalimab in samples obtained from this clinical trial. Tumor biopsies and peripheral blood samples were collected at baseline, following an initial dose of sotigalimab, and at the time of surgery after CRT completion from six patients. High dimensional single-cell techniques were used, including combined single-cell RNA-sequencing and proteomics (CITEseq) and multiplexed ion beam imaging, to analyze immune responses. Sotigalimab dramatically remodeled the immune compartment in the periphery and within the tumor microenvironment (TME), increasing expression of molecules related to antigen processing and presentation and altering metabolic pathways in myeloid cells. Concomitant with these changes in myeloid cells, sotigalimab treatment primed new T cell clonotypes and increased the density and activation of T cells with enhanced cytotoxic function. Sotigalimab treatment also induced a decrease in the frequency of Tregs in the TME. These findings indicate that a single dose of sotigalimab leads to enhanced antigen presentation that can activate T cells and induce new T cell clones. This restructuring of the TME provides elements which are critical to the development of effective antitumor immune responses and improved clinical outcomes.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Esofágicas , Humanos , Terapia Neoadyuvante/métodos , Microambiente Tumoral , Antineoplásicos/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico
16.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617357

RESUMEN

Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.

17.
Cancer Immunol Res ; 12(4): 453-461, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38276989

RESUMEN

Denosumab is a fully human mAb that binds receptor activator of NFκB ligand (RANKL). It is routinely administered to patients with cancer to reduce the incidence of new bone metastasis. RANK-RANKL interactions regulate bone turnover by controlling osteoclast recruitment, development, and activity. However, these interactions also can regulate immune cells including dendritic cells and medullary thymic epithelial cells. Inhibition of the latter results in reduced thymic negative selection of T cells and could enhance the generation of tumor-specific T cells. We examined whether administering denosumab could modify modulate circulating immune cells in patients with cancer. Blood was collected from 23 patients with prostate cancer and 3 patients with renal cell carcinoma, all of whom had advanced disease and were receiving denosumab, prior to and during denosumab treatment. Using high-dimensional mass cytometry, we found that denosumab treatment by itself induced modest effects on circulating immune cell frequency and activation. We also found minimal changes in the circulating T-cell repertoire and the frequency of new thymic emigrants with denosumab treatment. However, when we stratified patients by whether they were receiving chemotherapy and/or steroids, patients receiving these concomitant treatments showed significantly greater immune modulation, including an increase in the frequency of natural killer cells early and classical monocytes later. We also saw broad induction of CTLA-4 and TIM3 expression in circulating lymphocytes and some monocyte populations. These findings suggest that denosumab treatment by itself has modest immunomodulatory effects, but when combined with conventional cancer treatments, can lead to the induction of immunologic checkpoints. See related Spotlight by Nasrollahi and Davar, p. 383.


Asunto(s)
Neoplasias Óseas , Denosumab , Humanos , Masculino , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/prevención & control , Neoplasias Óseas/secundario , Denosumab/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Ligando RANK/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico
18.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352460

RESUMEN

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.

19.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193548

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Animales , Ratones , Adenosina Trifosfato/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Cetonas
20.
Cancer Immunol Res ; 12(6): 704-718, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38552171

RESUMEN

The checkpoint immunotherapeutic pembrolizumab induces responses in a small minority of patients with metastatic castration-resistant prostate cancer (mCRPC). Radium-223 (R223) may increase immunogenicity of bone metastases and increase pembrolizumab (P) activity. In a randomized phase II study, we assessed the effect of R223+P compared with R223 on tumor immune infiltration, safety, and clinical outcomes in patients with mCRPC. The primary endpoint was differences in CD4+ and CD8+ T-cell infiltrate in 8-week versus baseline bone metastasis biopsies; secondary endpoints were safety, radiographic progression-free survival (rPFS), and overall survival (OS). Of the 42 treated patients (29 R223+P, 13 R223), 18 R223+P and 8 R223 patients had evaluable paired tumor biopsies. Median fold-change of CD4+ T cells was -0.7 (range: -9.3 to 4.7) with R223+P and 0.1 (-11.1 to 3.7) with R223 (P = 0.66); for CD8+ T cells, median fold-change was -0.6 (-7.4 to 5.3) with R223+P and -1.3 (-3.1 to 4.8) with R223 (P = 0.66). Median rPFS and OS was 6.1 (95% confidence interval: 2.7-11.0) and 16.9 months [12.7-not reached (NR)], respectively, with R223+P and 5.7 (2.6-NR) and 16.0 (9.0-NR), respectively, with R223. Although R223+P was well tolerated with no unexpected toxicity, the combination did not improve efficacy. High-dimensional flow cytometry demonstrated minimal immune modulation with R223, whereas R223+P induced CTLA-4 expression on circulating CD4+ T cells. Clinical responders possessed lower circulating frequencies of Ki67+ T and myeloid cells at baseline and higher circulating frequencies of TIM-3+ T and myeloid cells by week 9. Although R223+P did not induce T-cell infiltration into the tumor microenvironment, exhaustion of induced peripheral T-cell immune responses may dampen the combination's clinical activity.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Próstata Resistentes a la Castración , Radio (Elemento) , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anciano , Radio (Elemento)/uso terapéutico , Persona de Mediana Edad , Anciano de 80 o más Años , Neoplasias Óseas/secundario , Neoplasias Óseas/tratamiento farmacológico , Linfocitos T CD8-positivos/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA