Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circulation ; 139(5): 647-659, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30586712

RESUMEN

BACKGROUND: The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. METHODS: To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. RESULTS: Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. CONCLUSIONS: Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.


Asunto(s)
Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Monocitos/inmunología , Infarto del Miocardio/microbiología , Miocardio/inmunología , Animales , Bacterias/inmunología , Bacterias/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Trasplante de Microbiota Fecal , Femenino , Interacciones Huésped-Patógeno , Lactobacillus/inmunología , Lactobacillus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/trasplante , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Probióticos/administración & dosificación , Células RAW 264.7
2.
Cell Mol Life Sci ; 74(10): 1805-1817, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27999898

RESUMEN

Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Activación Transcripcional , Animales , Diferenciación Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Redes Reguladoras de Genes , Código de Histonas , Ratones , Células Madre Embrionarias de Ratones/citología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Stem Cells ; 33(12): 3468-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303070

RESUMEN

Leukemia inhibitory factor (LIF) regulates mouse embryonic stem cell (mESC) pluripotency through STAT3 activation, but the downstream signaling remains largely unelucidated. Using cDNA microarrays, we verified B cell leukemia/lymphoma 3 (Bcl3) as the most significantly downregulated factor following LIF withdrawal in mESCs. Bcl3 knockdown altered mESC morphology, reduced expression of pluripotency genes including Oct4, Sox2, and Nanog, and downregulated DNA binding of acetylated histone 3 and RNA polymerase II on the Oct4 promoter. Conversely, Bcl3 overexpression partially prevented cell differentiation and promoted Oct4 and Nanog promoter activities. Furthermore, coimmunoprecipitation and chromatin immunoprecipitation experiments demonstrated that Bcl3 regulation of mESC pluripotency may be through its association with Oct4 and ß-catenin and its promoter binding capability. These results establish that Bcl3 positively regulates pluripotency genes and thus shed light on the mechanism of Bcl3 as a downstream molecule of LIF/STAT3 signaling in pluripotency maintenance.


Asunto(s)
Factor Inhibidor de Leucemia/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Proteínas del Linfoma 3 de Células B , Regulación de la Expresión Génica , Factor Inhibidor de Leucemia/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción STAT3/genética , Factores de Transcripción/genética
4.
Cancer Res ; 82(15): 2716-2733, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35666812

RESUMEN

Loss of the von Hippel-Lindau (VHL) tumor suppressor gene function accounts for 70% to 80% of all clear-cell renal cell carcinoma (ccRCC) cases, the most prevalent form of RCC. Accumulating evidence has indicated that ccRCC arises from sites of chronic inflammation, yet how ccRCC tumor cells interact with immune components of the microenvironment has not been fully elucidated. In this study, we used unbiased proteomic and genomic analyses on components of the tumor microenvironment under different conditions, identifying the molecular and cellular mechanisms that underlie the cross-talk between VHL-deficient kidney tubule cells and macrophages. In vitro and in a Vhlh conditional knockout mouse model, VHL-deficient noncancerous kidney epithelial cells, representing the early stage of ccRCC initiation, secreted IL6 that induced macrophage infiltration and polarization toward the protumorigenic M2 phenotype. Activated human macrophages secreted CCL18 and TGFß1 to stimulate epithelial-to-mesenchymal transition (EMT) of the kidney tubule cells. Treatment with IL6-neutralizing antibody rescued inflammatory, proliferative, and EMT phenotypes of kidney epithelial cells in Vhlh conditional knockout mice. Furthermore, in a human ccRCC xenograft model, exogenous human primary or cultured macrophages significantly promoted primary tumor growth and metastasis in a CCL18-dependent manner. These findings identify specific factors involved in reciprocal cross-talk between tumor cells and immune components in the microenvironment, thus providing an avenue for early intervention in ccRCC. SIGNIFICANCE: The identification of VHL-deficient kidney tubule cell cross-talk with macrophages regulated by IL6 and CCL18 reveals potential targets for the prevention and treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Quimiocinas CC , Interleucina-6 , Neoplasias Renales , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Quimiocinas CC/metabolismo , Células Epiteliales/patología , Humanos , Interleucina-6/metabolismo , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Proteómica , Microambiente Tumoral , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
5.
Cancer Res ; 81(19): 5060-5073, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301760

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cell carcinoma (RCC), and its progression has been linked to chronic inflammation. About 70% of the ccRCC cases are associated with inactivation of the von Hippel-Lindau (VHL) tumor-suppressor gene. However, it is still not clear how mutations in VHL, encoding the substrate-recognition subunit of an E3 ubiquitin ligase that targets the alpha subunit of hypoxia-inducible factor-α (HIFα), can coordinate tissue inflammation and tumorigenesis. We previously generated mice with conditional Vhlh knockout in kidney tubules, which resulted in severe inflammation and fibrosis in addition to hyperplasia and the appearance of transformed clear cells. Interestingly, the endothelial cells (EC), although not subject to genetic manipulation, nonetheless showed profound changes in gene expression that suggest a role in promoting inflammation and tumorigenesis. Oncostatin M (OSM) mediated the interaction between VHL-deficient renal tubule cells and the ECs, and the activated ECs in turn induced macrophage recruitment and polarization. The OSM-dependent microenvironment also promoted metastasis of exogenous tumors. Thus, OSM signaling initiates reconstitution of an inflammatory and tumorigenic microenvironment by VHL-deficient renal tubule cells, which plays a critical role in ccRCC initiation and progression. SIGNIFICANCE: A novel mechanism of cross-talk between ECs and VHL-deficient kidney tubules that stimulates inflammation and tumorigenesis is discovered, suggesting OSM could be a potential target for ccRCC intervention.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Células Endoteliales/metabolismo , Oncostatina M/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Renales/etiología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Mutación , Oncostatina M/metabolismo , Fenotipo , Transducción de Señal , Microambiente Tumoral/genética
6.
Sci Rep ; 11(1): 2377, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504864

RESUMEN

MicroRNA-125b, the first microRNA to be identified, is known to promote cardiomyocyte maturation from embryonic stem cells; however, its physiological role remains unclear. To investigate the role of miR-125b in cardiovascular biology, cardiac-specific miR-125b-1 knockout mice were generated. We found that cardiac-specific miR-125b-1 knockout mice displayed half the miR-125b expression of control mice resulting in a 60% perinatal death rate. However, the surviving mice developed hearts with cardiac hypertrophy. The cardiomyocytes in both neonatal and adult mice displayed abnormal mitochondrial morphology. In the deficient neonatal hearts, there was an increase in mitochondrial DNA, but total ATP production was reduced. In addition, both the respiratory complex proteins in mitochondria and mitochondrial transcription machinery were impaired. Mechanistically, using transcriptome and proteome analysis, we found that many proteins involved in fatty acid metabolism were significantly downregulated in miR-125b knockout mice which resulted in reduced fatty acid metabolism. Importantly, many of these proteins are expressed in the mitochondria. We conclude that miR-125b deficiency causes a high mortality rate in neonates and cardiac hypertrophy in adult mice. The dysregulation of fatty acid metabolism may be responsible for the cardiac defect in the miR-125b deficient mice.


Asunto(s)
Cardiomegalia/etiología , Predisposición Genética a la Enfermedad , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Muerte Perinatal/etiología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Marcación de Gen , Estudios de Asociación Genética , Pruebas de Función Cardíaca , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Especificidad de Órganos/genética , Fenotipo , Proteómica/métodos , Interferencia de ARN , Transcriptoma
7.
Theranostics ; 9(22): 6550-6567, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588235

RESUMEN

Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.


Asunto(s)
Infarto del Miocardio/fisiopatología , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Remodelación Ventricular/genética , Animales , Hipoxia de la Célula , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Electrocardiografía , Fibroblastos/metabolismo , Fibrosis/genética , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Miocardio/patología , Células 3T3 NIH , Factores de Transcripción/genética , Remodelación Ventricular/fisiología
8.
EBioMedicine ; 40: 675-684, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30639418

RESUMEN

BACKGROUND: Mutations in PKD1 or PKD2 gene lead to autosomal dominant polycystic kidney disease (ADPKD). The mechanism of ADPKD progression and its link to increased cardiovascular mortality is still elusive. METHODS: We differentiated ADPKD patient induced pluripotent stem cells (iPSCs) to cardiomyocytes (CMs). The electrophysiological properties at the cellular level were analyzed by calcium imaging and whole cell patch clamping. FINDINGS: The ADPKD patient iPSC-CMs had decreased sarcoplasmic reticulum calcium content compared with Control-CMs. Spontaneous action potential of the PKD2 mutation line-derived CMs demonstrated slower beating rate and longer action potential duration. The PKD1 mutation line-derived CMs showed a comparable dose-dependent shortening of phase II repolarization with the Control-CMs, but a significant increase in beating frequency in response to L-type calcium channel blocker. The PKD1-mutant iPSC-CMs also showed a relatively unstable baseline as a greater percentage of cells exhibited delayed afterdepolarizations (DADs). Both the ADPKD patient iPSC-CMs showed more ß-adrenergic agonist-elicited DADs compared with Control-CMs. INTERPRETATION: Characterization of ADPKD patient iPSC-CMs provides new insights into the increased clinical risk of arrhythmias, and the results enable disease modeling and drug screening for cardiac manifestations of ADPKD. FUND: Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Technology Supporting Platform Axis Scheme, Thematic Research Program and Summit Research Program, and Kaohsiung Medical University Hospital, Taiwan.


Asunto(s)
Cardiopatías/etiología , Cardiopatías/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Riñón Poliquístico Autosómico Dominante/complicaciones , Agonistas Adrenérgicos beta/farmacología , Biomarcadores , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Diferenciación Celular , Línea Celular , Fenómenos Electrofisiológicos/efectos de los fármacos , Expresión Génica , Cardiopatías/diagnóstico , Humanos , Imagen Molecular , Mutación , Fenotipo , Riñón Poliquístico Autosómico Dominante/genética , Retículo Sarcoplasmático/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
9.
EBioMedicine ; 46: 236-247, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31401194

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a life-threatening disease, often leading to heart failure. Defining therapeutic targets at an early time point is important to prevent heart failure. METHODS: MicroRNA screening was performed at early time points after MI using paired samples isolated from the infarcted and remote myocardium of pigs. We also examined the microRNA expression in plasma of MI patients and pigs. For mechanistic studies, AAV9-mediated microRNA knockdown and overexpression were administrated in mice undergoing MI. FINDINGS: MicroRNAs let-7a and let-7f were significantly downregulated in the infarct area within 24 h post-MI in pigs. We also observed a reduction of let-7a and let-7f in plasma of MI patients and pigs. Inhibition of let-7 exacerbated cardiomyocyte apoptosis, induced a cardiac hypertrophic phenotype, and resulted in worsened left ventricular ejection fraction. In contrast, ectopic let-7 overexpression significantly reduced those phenotypes and improved heart function. We then identified TGFBR3 as a target of let-7, and found that induction of Tgfbr3 in cardiomyocytes caused apoptosis, likely through p38 MAPK activation. Finally, we showed that the plasma TGFBR3 level was elevated after MI in plasma of MI patients and pigs. INTERPRETATION: Together, we conclude that the let-7-Tgfbr3-p38 MAPK signalling plays an important role in cardiomyocyte apoptosis after MI. Furthermore, microRNA let-7 and Tgfbr3 may serve as therapeutic targets and biomarkers for myocardial damage. FUND: Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Translational Innovation of Biopharmaceutical Development-Technology Supporting Platform Axis, Thematic Research Program and the Summit Research Program, Taiwan.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ecocardiografía , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Ratones , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Porcinos , Factores de Tiempo , Transducción Genética , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Noncoding RNA Res ; 2(2): 100-110, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30159427

RESUMEN

The emergence of non-coding RNAs (ncRNAs) has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects.

11.
PLoS One ; 5(12): e14414, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21203390

RESUMEN

BACKGROUND: The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. METHODOLOGY/PRINCIPAL FINDINGS: We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation. CONCLUSION/SIGNIFICANCE: FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Miosinas Ventriculares/metabolismo
12.
Biochem Biophys Res Commun ; 334(1): 199-206, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15992771

RESUMEN

Alpha-Pal/NRF-1 is a critical regulator of the promoter of human IAP/CD47 gene, a gene related to memory formation in rodents. However, its function in neurons was unknown. We found that stable or transient expression of full-length alpha-Pal/NRF-1 in human neuroblastoma IMR-32 cells significantly induced neurite outgrowth and increased the length of neurites both in medium containing 10% fetal bovine serum and in serum-free medium. In contrast, the dominant-negative mutant of alpha-Pal/NRF-1 inhibited the induction and extension of neurites. Ectopic expression of full-length alpha-Pal/NRF-1 also increased the induction of neurite outgrowth in primary mouse cortical neurons. The IAP antisense cDNA significantly inhibited the increase of neurite outgrowth by alpha-Pal/NRF-1. These findings indicate that a novel function of alpha-Pal/NRF-1 is to regulate neuronal differentiation, and that this function is mediated partly via its downstream IAP gene.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neuritas/metabolismo , Neuritas/patología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Factor Nuclear 1 de Respiración , Factores Nucleares de Respiración , Proteínas Recombinantes/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA