RESUMEN
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.
RESUMEN
OBJECTIVE: To summarize the application experience of the pneumatic arm in transnasal sphenoidal pituitary adenoma resection under neuroendoscope. METHODS: A retrospective analysis was conducted on the clinical data of 52 patients with pituitary adenoma who underwent endoscopic transsphenoidal surgery with pneumatic arm fixation in the Neurosurgery Department of the First Affiliated Hospital of Anhui Medical University from July 2021 to March 2024. Among them, there were 5 cases of pituitary microadenoma, 35 cases of macroadenoma, and 12 cases of giant adenoma. Head CT and a full set of hormones were re-examined within 24 hours after surgery to evaluate the surgical effect. Follow-up was conducted by the outpatient department after surgery to assess the clinical symptoms, hormone level, and imaging of all patients. RESULTS: Among 52 patients, gross total resection was achieved in 48 cases (92.3%), subtotal resection in 3 cases (5.8%), and partial resection in 1 case (1.9%). Preoperatively, 43 patients had diminished vision, with 40 showing improvement postoperatively, 1 worsening, and 2 having no significant improvement. Thirty-eight patients had headaches preoperatively, and all showed varying degrees of improvement postoperatively. Routine hormone examination within 24 hours after surgery showed that all 20 prolactinoma patients had restored normal hormone levels, 10 of 12 growth hormone-secreting adenoma patients normalized, and 4 of 6 cases of adrenocorticotropic hormone-secreting adenoma immediately relieved after surgery. Postoperative complications included intracranial hematoma in 1 case, cerebrospinal fluid leakage in 2 cases, transient diabetes insipidus in 6 cases, intracranial infection in 1 case, and no death cases. The median follow-up time of 52 patients was 18.6 months (range: 1-32 mo). During the follow-up period, the initial clinical symptoms of all patients improved to varying degrees, and they were able to work and live normally. At the last follow-up, 1 patient had recurrent tumor and 1 patient had progression. CONCLUSION: Transnasal sphenoidal resection of pituitary adenoma using a pneumatic arm-fixed neuroendoscope allows the operator to perform the surgery with both hands, resulting in satisfactory overall tumor resection and fewer surgical complications. This technique has good clinical value for promotion.
RESUMEN
Electron-phonon interactions, crucial in condensed matter, are rarely seen in Metal-Organic Frameworks (MOFs). Detecting these interactions typically involves analyzing luminescence in lanthanide- or actinide-based compounds. Prior studies on Ln- and Ac-based MOFs at high temperatures revealed additional peaks, but these were too faint for thorough analysis. In our research, we fabricated a high-quality, crystalline uranium-based MOF (KIT-U-1) thin film using a layer-by-layer method. Under UV light, this film showed two distinct "hot bands," indicating a strong electron-phonon interaction. At 77â K, these bands were absent, but at 300â K, a new emission band appeared with half the intensity of the main luminescence. Surprisingly, a second hot band emerged above 320â K, deviating from previous findings in rare-earth compounds. We conducted a detailed ab-initio analysis employing time-dependent density functional theory to understand this unusual behaviour and to identify the lattice vibration responsible for the strong electron-phonon coupling. The KIT-U-1 film's hot-band emission was then utilized to create a highly sensitive, single-compound optical thermometer. This underscores the potential of high-quality MOF thin films in exploiting the unique luminescence of lanthanides and actinides for advanced applications.
RESUMEN
Biallelic mutations in POLR3A have been associated with childhood-onset hypomyelinating leukodystrophies and adolescent-to-adult-onset spastic ataxia, the latter of which has been linked to the intronic variant c.1909 + 22G>A. We report a case of adult-onset spastic ataxia in a 75-year-old man, being a compound heterozygous carrier of this variant, whose brain and spinal cord were for the first time investigated by neuropathological examination. We describe prominent degeneration of the posterior columns, spinocerebellar tracts, and anterior corticospinal tracts of the spinal cord in a pattern resembling Friedreich's ataxia, with a notable lack of significant white matter pathology throughout the brain, in marked contrast with childhood-onset cases. Immunohistochemical examination for the POLR3A protein demonstrated no apparent differences in localization or staining intensity between the proband and an age-matched control subject. We demonstrate the clinicopathologic description of POLR3A-related neurodegenerative disease and also mention the differential diagnosis of the childhood-onset hypomyelinating leukodystrophy and late-onset spastic ataxia phenotypes.
Asunto(s)
Atrofia Óptica , Ataxias Espinocerebelosas , Anciano , Humanos , Discapacidad Intelectual , Masculino , Espasticidad Muscular , ARN Polimerasa IIIRESUMEN
Ataxia-pancytopenia (AP) syndrome is characterized by cerebellar ataxia, variable hematologic cytopenias, and predisposition to marrow failure and myeloid leukemia, sometimes associated with monosomy 7. Here, in the four-generation family UW-AP, linkage analysis revealed four regions that provided the maximal LOD scores possible, one of which was in a commonly microdeleted chromosome 7q region. Exome sequencing identified a missense mutation (c.2640C>A, p.His880Gln) in the sterile alpha motif domain containing 9-like gene (SAMD9L) that completely cosegregated with disease. By targeted sequencing of SAMD9L, we subsequently identified a different missense mutation (c.3587G>C, p.Cys1196Ser) in affected members of the first described family with AP syndrome, Li-AP. Neither variant is reported in the public databases, both affect highly conserved amino acid residues, and both are predicted to be damaging. With time in culture, lymphoblastic cell lines (LCLs) from two affected individuals in family UW-AP exhibited copy-neutral loss of heterozygosity for large portions of the long arm of chromosome 7, resulting in retention of only the wild-type SAMD9L allele. Newly established LCLs from both individuals demonstrated the same phenomenon. In addition, targeted capture and sequencing of SAMD9L in uncultured blood DNA from both individuals showed bias toward the wild-type allele. These observations indicate in vivo hematopoietic mosaicism. The hematopoietic cytopenias that characterize AP syndrome and the selective advantage for clones that have lost the mutant allele support the postulated role of SAMD9L in the regulation of cell proliferation. Furthermore, we show that AP syndrome is distinct from the dyskeratoses congenita telomeropathies, with which it shares some clinical characteristics.
Asunto(s)
Ataxia Cerebelosa/genética , Aberraciones Cromosómicas , Mutación Missense/genética , Pancitopenia/genética , Proteínas/genética , Adolescente , Adulto , Ataxia Cerebelosa/patología , Niño , Cromosomas Humanos Par 7/genética , Exoma/genética , Femenino , Ligamiento Genético , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad , Pancitopenia/patología , Linaje , Proteínas Supresoras de Tumor/genética , Adulto JovenRESUMEN
INTRODUCTION: Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS: Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS: There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION: The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.
Asunto(s)
Regiones no Traducidas 3'/genética , Enfermedad de Charcot-Marie-Tooth/genética , Conexinas/genética , Salud de la Familia , Mutación/genética , Adolescente , Adulto , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Femenino , Perfilación de la Expresión Génica , Pruebas Genéticas , Genotipo , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína beta1 de Unión ComunicanteRESUMEN
Lysophosphatidylserines (lyso-PSs) are a class of signaling lipids that regulate immunological and neurological processes. The metabolism of lyso-PSs remains poorly understood in vivo. Recently, we determined that ABHD12 is a major brain lyso-PS lipase, implicating lyso-PSs in the neurological disease polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and cataract (PHARC), which is caused by null mutations in the ABHD12 gene. Here, we couple activity-based profiling with pharmacological and genetic methods to annotate the poorly characterized enzyme ABHD16A as a phosphatidylserine (PS) lipase that generates lyso-PS in mammalian systems. We describe a small-molecule inhibitor of ABHD16A that depletes lyso-PSs from cells, including lymphoblasts derived from subjects with PHARC. In mouse macrophages, disruption of ABHD12 and ABHD16A respectively increases and decreases both lyso-PSs and lipopolysaccharide-induced cytokine production. Finally, Abhd16a(-/-) mice have decreased brain lyso-PSs, which runs counter to the elevation in lyso-PS in Abhd12(-/-) mice. Our findings illuminate an ABHD16A-ABHD12 axis that dynamically regulates lyso-PS metabolism in vivo, designating these enzymes as potential targets for treating neuroimmunological disorders.
Asunto(s)
Factores Inmunológicos/metabolismo , Lisofosfolípidos/metabolismo , Monoacilglicerol Lipasas/genética , Fosfolipasas/genética , Animales , Encéfalo/enzimología , Encéfalo/inmunología , Encéfalo/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Factores Inmunológicos/inmunología , Lisofosfolípidos/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Mutación , Fosfolipasas/antagonistas & inhibidoresRESUMEN
We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.
Asunto(s)
Cromosomas Humanos X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Variación Genética , Espasticidad Muscular/genética , Trastornos Parkinsonianos/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Anciano , Sitios de Unión/genética , Células Cultivadas , Codón sin Sentido , Exoma , Femenino , Mutación del Sistema de Lectura , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Ligamiento Genético , Células HEK293 , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Espasticidad Muscular/metabolismo , Mutación Missense , Trastornos Parkinsonianos/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
OBJECTIVE: To identify the cause of childhood onset involuntary paroxysmal choreiform and dystonic movements in 2 unrelated sporadic cases and to investigate the functional effect of missense mutations in adenylyl cyclase 5 (ADCY5) in sporadic and inherited cases of autosomal dominant familial dyskinesia with facial myokymia (FDFM). METHODS: Whole exome sequencing was performed on 2 parent-child trios. The effect of mutations in ADCY5 was studied by measurement of cyclic adenosine monophosphate (cAMP) accumulation under stimulatory and inhibitory conditions. RESULTS: The same de novo mutation (c.1252C>T, p.R418W) in ADCY5 was found in both studied cases. An inherited missense mutation (c.2176G>A, p.A726T) in ADCY5 was previously reported in a family with FDFM. The significant phenotypic overlap with FDFM was recognized in both cases only after discovery of the molecular link. The inherited mutation in the FDFM family and the recurrent de novo mutation affect residues in different protein domains, the first cytoplasmic domain and the first membrane-spanning domain, respectively. Functional studies revealed a statistically significant increase in ß-receptor agonist-stimulated intracellular cAMP consistent with an increase in adenylyl cyclase activity for both mutants relative to wild-type protein, indicative of a gain-of-function effect. INTERPRETATION: FDFM is likely caused by gain-of-function mutations in different domains of ADCY5-the first definitive link between adenylyl cyclase mutation and human disease. We have illustrated the power of hypothesis-free exome sequencing in establishing diagnoses in rare disorders with complex and variable phenotype. Mutations in ADCY5 should be considered in patients with undiagnosed complex movement disorders even in the absence of a family history.
Asunto(s)
Adenilil Ciclasas/genética , Trastornos Distónicos/genética , Enfermedades del Nervio Facial/genética , Mutación Missense/genética , Adenilil Ciclasas/metabolismo , Adolescente , AMP Cíclico/metabolismo , Trastornos Distónicos/complicaciones , Enfermedades del Nervio Facial/complicaciones , Femenino , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , TransfecciónRESUMEN
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
RESUMEN
BACKGROUND: Most published reports on SAMD9L-related ataxia-pancytopenia syndrome (ATXPC) have emphasized the hematologic findings. Fewer details are known about the progression of neurologic manifestations and methods for monitoring them. CASES: We present six individuals from two families transmitting a heterozygous variant in SAMD9L, exhibiting clinical variations in their hematologic and neurologic findings. Serial motor function testing was used to monitor motor proficiency over a 2 to 3 year period in the proband and his father from Family 1. CONCLUSIONS: Our case series focuses on the neurologic progression in patients with heterozygous variants in SAMD9L. Patients with ATXPC should be followed to evaluate a wide range of neurologic manifestations. Serial motor function testing using a standardized method is helpful to track changes in balance and coordination in children and adults with ATXPC and could aid in a future extended natural history study.
Asunto(s)
Ataxia , Humanos , Masculino , Femenino , Adulto , Niño , Ataxia/genética , Ataxia/diagnóstico , Ataxia/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/genética , Adolescente , Progresión de la Enfermedad , Preescolar , Adulto Joven , Persona de Mediana Edad , Proteínas Supresoras de TumorRESUMEN
PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) is a recently described autosomal-recessive neurodegenerative disease caused by mutations in the α-ß-hydrolase domain-containing 12 gene (ABHD12). Only five homozygous ABHD12 mutations have been reported and the pathogenesis of PHARC remains unclear. We evaluated a woman who manifested short stature as well as the typical features of PHARC. Sequence analysis of ABHD12 revealed a novel heterozygous c.1129A>T (p.Lys377*) mutation. Targeted comparative genomic hybridization detected a 59-kb deletion that encompasses exon 1 of ABHD12 and exons 1-4 of an adjacent gene, GINS1, and includes the promoters of both genes. The heterozygous deletion was also carried by the patient's asymptomatic mother. Quantitative reverse transcription-PCR demonstrated â¼50% decreased expression of ABHD12 RNA in lymphoblastoid cell lines from both individuals. Activity-based protein profiling of serine hydrolases revealed absence of ABHD12 hydrolase activity in the patient and 50% reduction in her mother. This is the first report of compound heterozygosity in PHARC and the first study to describe how a mutation might affect ABHD12 expression and function. The possible involvement of haploinsufficiency for GINS1, a DNA replication complex protein, in the short stature of the patient and her mother requires further studies.
Asunto(s)
Ataxia/genética , Catarata/genética , Monoacilglicerol Lipasas/genética , Mutación , Polineuropatías/genética , Retinitis Pigmentosa/genética , Adulto , Ataxia/diagnóstico , Ataxia/metabolismo , Catarata/diagnóstico , Catarata/metabolismo , Femenino , Expresión Génica , Orden Génico , Heterocigoto , Humanos , Masculino , Monoacilglicerol Lipasas/metabolismo , Linaje , Fenotipo , Polineuropatías/diagnóstico , Polineuropatías/metabolismo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Eliminación de Secuencia , Transcripción GenéticaRESUMEN
Easy-to-integrate, remote read-out thermometers with fast response are of huge interest in numerous application fields. In the context of optical read-out devices, sensors based on the emission of lanthanides (Eu(III), Tb(III)) are particularly promising. Here, by using a layer-by-layer (LbL) approach in the liquid-phase epitaxy process, a series of continuous, low-thickness lanthanide-MIL-103 SURMOFs were fabricated to yield highly sensitive thermometers with optical readout. These Ln-SURMOFs exhibit remarkable temperature-sensing photoluminescence behavior, which can be read out using the naked eye. High transmittance is realized as well by precisely controlling the film thickness and the quality of these Ln-SURMOF thermometers. Moreover, we demonstrate that the thermal sensitivity can be improved in the temperature regime above 120 K, by controlling the energy transfer between Tb(III) and Eu(III). This performance is achieved by employing a sophisticated supramolecular architecture, namely MOF-on-MOF heteroepitaxy.
RESUMEN
INTRODUCTION: Drug hypersensitivity syndrome (DHS) induced by sulfasalazine is a serious systemic delayed adverse drug reaction, which is associated with significant morbidity and mortality. PATIENT CONCERNS: A 52-year-old man was hospitalized for developing a rash after 3 weeks of sulfasalazine treatment for ulcerative colitis (UC). DIAGNOSIS: The patient was diagnosed with DHS based on his drug history, clinical manifestations, and laboratory test results. INTERVENTIONS: The patient was administered intravenous glucocorticoids. The patient's condition improved after treatment with human immunoglobulin and antihistamines. OUTCOMES: Combination therapy of glucocorticoid and gamma globulin, the whole-body pruritus disappeared, and no new rash appeared. The whole-body rash subsided or turned dark red. CONCLUSION: This article describes the diagnosis and treatment process of a case of sulfasalazine-induced DHS and reviews the relevant literature to improve clinician understanding and avoid misdiagnosis and missed diagnosis.
Asunto(s)
Colitis Ulcerosa , Síndrome de Hipersensibilidad a Medicamentos , Hipersensibilidad a las Drogas , Exantema , Colitis Ulcerosa/complicaciones , Hipersensibilidad a las Drogas/diagnóstico , Síndrome de Hipersensibilidad a Medicamentos/diagnóstico , Síndrome de Hipersensibilidad a Medicamentos/tratamiento farmacológico , Síndrome de Hipersensibilidad a Medicamentos/etiología , Exantema/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Sulfasalazina/efectos adversosRESUMEN
For the first time, a procedure has been established for the growth of surface-anchored metal-organic framework (SURMOF) copper(II) benzene-1,4-dicarboxylate (Cu-BDC) thin films of thickness control with single molecule accuracy. For this, we exploit the novel method solution atomic layer deposition (sALD). The sALD growth rate has been determined at 4.5 Å per cycle. The compact and dense SURMOF films grown at room temperature by sALD possess a vastly superior film thickness uniformity than those deposited by conventional solution-based techniques, such as dipping and spraying while featuring clear crystallinity from 100 nm thickness. The highly controlled layer-by-layer growth mechanism of sALD proves crucial to prevent unwanted side reactions such as Ostwald ripening or detrimental island growth, ensuring continuous Cu-BDC film coverage. This successful demonstration of sALD-grown compact continuous Cu-BDC SURMOF films is a paradigm change and provides a key advancement enabling a multitude of applications that require continuous and ultrathin coatings while maintaining tight film thickness specifications, which were previously unattainable with conventional solution-based growth methods.
RESUMEN
BACKGROUND: Elevated triglycerides (TG) and reduced high-density lipoprotein cholesterol (HDL-C) are recognized as essential and independent hazard factors for total death and major adverse cardiovascular events (MACE) in patients with coronary heart disease (CHD). However, whether the increased TG/HDL-C forecasted the prognosis of CHD is still unknown. Therefore, we performed a meta-analysis to investigate the relationship between the elevated TG/HDL-C ratio and poor prognosis of CHD. METHODS: A systematic literature search was conducted in PubMed, Web of Science, EMBASE, and The Cochrane Library, until August 30, 2021. Prospective observational studies regarding the association between TG/HDL-C and long-term mortality/MACEs in CHD patients were included. RESULTS: In total, 6 independent prospective studies of 10,222 participants with CHD were enrolled in the systematic and meta-analysis. Our outcomes of the meta-analysis indicated that the elevated TG/HDL-C group had a significantly increased risk of long-term all-cause mortality (hazard ratio [HR] = 2.92, 95% confidence interval [CI]: 1.75-4.86, P < .05) and long-term MACEs (HR = 1.56, 95%CI 1.11-2.18, P < .05). CONCLUSION: In patients with CHD, the present study showed that the high TG/HDL-C was associated with increased risk of long-term all-cause mortality and MACE.
Asunto(s)
Enfermedad Coronaria , Hipertrigliceridemia , Humanos , HDL-Colesterol , Triglicéridos , Estudios Prospectivos , Factores de Riesgo , Hipertrigliceridemia/complicaciones , Colesterol , Pronóstico , Estudios Observacionales como AsuntoRESUMEN
OBJECTIVE: Familial idiopathic basal ganglia calcification (FIBGC) is a rare, heritable disease characterized by calcium deposition in the basal ganglia and other brain regions. Clinical presentations are diverse, featuring an array of neurologic, psychiatric, and/or cognitive symptoms. This dyad report presents neurogenetic, neuroimaging, neurological, and serial neuropsychological data from a father (S1) and son (S2) with FIBGC. METHOD/RESULTS: The SLC20A2 genetic mutation c.1828-1831delTCCC was identified for each patient, both of whom evidenced similar patterns of brain calcification mainly in the basal ganglia and cerebellum on neuroimaging. S1's onset was in his late 60s with primary motor abnormalities followed by cognitive decline; S2's younger onset (late 30s) was characterized by predominant psychiatric symptoms and mild cognitive changes. Our unique, detailed longitudinal study revealed that both subjects demonstrated largely stable performance across most neuropsychological domains assessed. CONCLUSIONS: The subjects' differences in presentation demonstrate the variable expressivity in FIBGC even with the same pathogenic variant within a single family. Distinct phenotypes may be associated with age of onset even in persons with the same mutation, consistent with past research. Disease progression may feature an initial period of notable change from baseline followed by relative stability, as seen both on imaging and neuropsychological evaluation.
Asunto(s)
Padre , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III , Enfermedades de los Ganglios Basales , Calcinosis , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Masculino , Enfermedades Neurodegenerativas , Pruebas Neuropsicológicas , Núcleo FamiliarRESUMEN
Background: Patients with early-stage laryngeal cancer, even stage T1-2N0, are at considerable risk of recurrence and death. The genetic and immunologic characteristics of recurrent laryngeal cancer remain unclear. Methods: A total of 52 T1-2N0 laryngeal cancer patients were enrolled. Of these, 42 tissue samples were performed by targeted DNA sequencing, and 21 cases were performed by NanoString immuno-oncology targeted RNA sequencing to identify the distinct molecular bases and immunologic features associated with relapse in patients with early laryngeal cancer, respectively. Results: To the best to our knowledge, we present for the first time an overview of the genomic mutation spectrum of early-stage laryngeal cancers. A total of 469 genomic alterations were detected in 211 distinct cancer-relevant genes, and the genes found to be mutated in more than five patients (>10%) included tumor protein p53 (TP53, 78.5%), FAT atypical cadherin 1 (FAT1, 26%), LDL receptor related protein 1B (LRP1B, 19%), cyclin dependent kinase inhibitor 2A (CDKN2A, 17%), tet methylcytosine dioxygenase 2 (TET2, 17%), notch receptor 1 (NOTCH1, 12%) and neuregulin 1 (NRG1, 12%). Recurrent laryngeal cancer demonstrated a higher tumor mutation burden (TMB), as well as higher LRP1B mutation and NOTCH1 mutation rates. Univariate and multivariate analyses revealed that high TMB (TMB-H) and NOTCH1 mutation are independent genetic factors that are significantly associated with shorter relapse-free survival (RFS). Simultaneously, the results of the transcriptome analysis presented recurrent tumors with NOTCH1 mutation displayed upregulation of the cell cycle pathway, along with decreased B cells score, T cells score, immune signature score and tumor-infiltrating lymphocytes (TILs) score. The Cancer Genome Atlas (TCGA)-laryngeal cancer dataset also revealed weakened immune response and impaired adhesion functions in NOTCH1-mutant patients. Conclusions: Genomic instability and impaired immune response are key features of the immunosurveillance escape and recurrence of early laryngeal cancer after surgery. These findings revealed immunophenotypic attenuation in recurrent tumors and provided valuable information for improving the management of these high-risk patients. Due to the small number of patients in this study, these differences need to be further validated in a larger cohort.
Asunto(s)
Neoplasias Laríngeas , Receptor Notch1 , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Humanos , Inmunidad/genética , Neoplasias Laríngeas/complicaciones , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/cirugía , Mutación , Recurrencia Local de Neoplasia/patología , Receptor Notch1/genética , Receptor Notch1/inmunologíaRESUMEN
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.