Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 119: 49-60, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33952430

RESUMEN

Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.


Asunto(s)
Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos , Transcriptoma/fisiología , Diferenciación Celular , Humanos
2.
STAR Protoc ; 5(2): 103083, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38781077

RESUMEN

The inability to quantify cardiomyocyte (CM) maturation remains a significant barrier to evaluating the effects of ongoing efforts to produce adult-like CMs from pluripotent stem cells (PSCs). Here, we present a protocol to quantify stem-cell-derived CM maturity using a single-cell RNA sequencing-based metric "entropy score." We describe steps for generating an entropy score using customized R code. This tool can be used to quantify maturation levels of PSC-CMs and potentially other cell types. For complete details on the use and execution of this protocol, please refer to Kannan et al.1.


Asunto(s)
Entropía , Miocitos Cardíacos , Transcriptoma , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transcriptoma/genética , Humanos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual/métodos , Animales , Análisis de Secuencia de ARN/métodos , Ratones , Perfilación de la Expresión Génica/métodos
3.
Nat Cardiovasc Res ; 3(6): 666-684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39196225

RESUMEN

Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.


Asunto(s)
Actinina , Diferenciación Celular , Elementos de Facilitación Genéticos , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Humanos , Elementos de Facilitación Genéticos/genética , Animales , Actinina/genética , Actinina/metabolismo , Diferenciación Celular/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Transducción de Señal/genética , Ratones , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica , Línea Celular , Fenotipo
4.
Cell Rep ; 42(4): 112330, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37014753

RESUMEN

A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Animales , Ratones , Miocitos Cardíacos , Diferenciación Celular , Células Madre Embrionarias , Factores de Transcripción/genética
5.
APL Bioeng ; 7(3): 036106, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37584027

RESUMEN

Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA