Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7963): 94-101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100916

RESUMEN

Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Carbono , Bosques , Nitrógeno , Suelo , Árboles , Carbono/metabolismo , Nitrógeno/metabolismo , Suelo/química , Árboles/clasificación , Árboles/metabolismo
2.
Nature ; 621(7980): 773-781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612513

RESUMEN

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Asunto(s)
Biodiversidad , Ambiente , Especies Introducidas , Árboles , Bases de Datos Factuales , Actividades Humanas , Especies Introducidas/estadística & datos numéricos , Especies Introducidas/tendencias , Filogenia , Lluvia , Temperatura , Árboles/clasificación , Árboles/fisiología
3.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
4.
Proc Natl Acad Sci U S A ; 119(19): e2013171119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500110

RESUMEN

Examining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration. Neglecting tree mortality leaves a large part of the picture undocumented. Here we show that increasingly diverse forest stands have increasingly high mortality probabilities. We found that the most species-rich stands in temperate biomes had mortality probabilities more than sevenfold higher than monospecific stands (∼0.6% year−1 in monospecific stands to 4.0% year−1 in the most species-rich stands) while in boreal stands increases were less pronounced but still significant (∼1.1% year−1 in monospecific stands to 1.8% year−1 in the most species-rich stands). Tree species richness was the third-most-important predictor of mortality in our models in temperate forests and the fifth-most-important predictor in boreal forests. Our results highlight that while the promotion of tree diversity undoubtedly has many positive effects on ecosystem functioning and the services that trees provide to humanity, it remains important to consider all aspects of forest dynamics in order to properly predict the implications of maintaining and promoting tree diversity.


Asunto(s)
Biodiversidad , Ecosistema , Canadá , Bosques , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101981

RESUMEN

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles/clasificación , Planeta Tierra , Árboles/crecimiento & desarrollo
8.
Glob Chang Biol ; 29(16): 4652-4661, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37296534

RESUMEN

Soil pH is critically important in regulating soil nutrients and thus influencing the biodiversity and ecosystem functions of terrestrial ecosystems. Despite the ongoing threat of nitrogen (N) pollution especially in the fast-developing regions, it remains unclear how increasing N deposition affects soil pH across global terrestrial ecosystems. By conducting a global meta-analysis with paired observations of soil pH under N addition and control from 634 studies spanning major types of terrestrial ecosystems, we show that soil acidification increases rapidly with N addition amount and is most severe in neutral-pH soils. Grassland soil pH decreases most strongly under high N addition while wetlands are the least acidified. By extrapolating these relationships to global mapping, we reveal that atmospheric N deposition leads to a global average soil pH decline of -0.16 in the past 40 years and regions encompassing Eastern United States, Southern Brazil, Europe, and South and East Asia are the hotspots of soil acidification under N deposition. Our results highlight that anthropogenically amplified atmospheric N deposition has profoundly altered global soil pH and chemistry. They suggest that atmospheric N deposition is a major threat to global terrestrial biodiversity and ecosystem functions.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Nitrógeno/análisis , Concentración de Iones de Hidrógeno
9.
Glob Chang Biol ; 29(24): 7159-7172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830780

RESUMEN

The frequency and intensity of droughts worldwide are challenging the conservation of soil organic carbon (SOC) pool. Microbial necromass is a key component of SOC, but how it responds to drought at specific soil depths remains largely unknown. Here, we conducted a 3-year field experiment in a forest plantation to investigate the impacts of drought intensities under three treatments (ambient control [CK], moderate drought [30% throughfall removal], and intensive drought [50% throughfall removal]) on soil microbial necromass pools (i.e., bacterial necromass carbon, fungal necromass carbon, and total microbial necromass carbon). We showed that the effects of drought on microbial necromass depended on microbial groups, soil depth, and drought intensity. While moderate drought increased total (+9.1% ± 3.3%) and fungal (+13.5% ± 4.9%) necromass carbon in the topsoil layer (0-15 cm), intensive drought reduced total (-31.6% ± 3.7%) and fungal (-43.6% ± 4.0%) necromass in the subsoil layer (15-30 cm). In contrast, both drought treatments significantly increased the BNC in the topsoil and subsoil. Our results suggested that the effects of drought on the microbial necromass of the subsoil were more pronounced than those of the topsoil. This study highlights the complex responses of microbial necromass to drought events depending on microbial community structure, drought intensity and soil depth with global implications when forecasting carbon cycling under climate change.


Asunto(s)
Sequías , Suelo , Carbono , Bosques , Ciclo del Carbono , Microbiología del Suelo
10.
Glob Chang Biol ; 29(13): 3591-3600, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37052888

RESUMEN

Soil respiration (Rs), as the second largest flux of carbon dioxide (CO2 ) between terrestrial ecosystems and the atmosphere, is vulnerable to global nitrogen (N) enrichment. However, the global distribution of the N effects on Rs remains uncertain. Here, we compiled a new database containing 1282 observations of Rs and its heterotrophic component (Rh) in field N manipulative experiments from 317 published papers. Using this up-to-date database, we first performed a formal meta-analysis to explore the responses of Rs and Rh to N addition, and then presented a global spatially explicit quantification of the N effects using a Random Forest model. Our results showed that experimental N addition significantly increased Rs but had a minimal impact on Rh, not supporting the prevailing view that N enrichment inhibits soil microbial respiration. For the major biomes, the magnitude of N input was the main determinant of the spatial variation in Rs response, while the most important predictors for Rh response were biome specific. Based on the key predictors, global mapping visually demonstrated a positive N effect in the regions with higher anthropogenic N inputs (i.e., atmospheric N deposition and agricultural fertilization). Overall, our analysis not only provides novel insight into the N effects on soil CO2 fluxes, but also presents a spatially explicit assessment of the N effects at the global scale, which are pivotal for understanding ecosystem carbon dynamics in future scenarios with more frequent anthropogenic activities.


Asunto(s)
Ecosistema , Suelo , Nitrógeno , Dióxido de Carbono/análisis , Respiración
11.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32393624

RESUMEN

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Asunto(s)
Cambio Climático , Frío , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Árboles/crecimiento & desarrollo , Asia , Europa (Continente) , Bosques , América del Norte , Fenotipo , Análisis Espacio-Temporal , Temperatura
12.
Glob Chang Biol ; 28(24): 7353-7365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056683

RESUMEN

Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.


Asunto(s)
Compuestos de Amonio , Fósforo , Fósforo/química , Ecosistema , Nitratos , Nitrógeno/análisis , Suelo/química , Carbono/química , Biomasa , Microbiología del Suelo , Plantas
13.
Ecol Appl ; 32(5): e2575, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191122

RESUMEN

Ecological restoration is essential to reverse land degradation worldwide. Most studies have assessed the restoration of ecosystem functions individually, as opposed to a holistic view. Here we developed a network-based ecosystem multifunctionality (EMF) framework to identify key functions in evaluating EMF restoration. Through synthesizing 293 restoration studies (2900 observations) following cropland abandonment, we found that individual soil functions played different roles in determining the restoration of belowground EMF. Soil carbon, total nitrogen, and phosphatase were key functions to predict the recovery of belowground EMF. On average, abandoned cropland recovered ~19% of EMF during 18 years. The restoration of EMF became larger with longer recovery time and higher humidity index, but lower with increasing soil depth and initial soil carbon. Overall, this study presents a network-based EMF framework, effectively helping to evaluate the success of ecosystem restoration and identify the key functions.


Asunto(s)
Ecosistema , Suelo , Carbono , Nitrógeno/metabolismo , Microbiología del Suelo
14.
New Phytol ; 229(5): 2957-2969, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33188641

RESUMEN

Despite widespread anthropogenic nutrient enrichment, it remains unclear how nutrient enrichment influences plant-arbuscular mycorrhizal fungi (AMF) symbiosis and ecosystem multifunctionality at the global scale. Here, we conducted a meta-analysis to examine the worldwide effects of nutrient enrichment on AMF and plant diversity and ecosystem multifunctionality using data of field experiments from 136 papers. Our analyses showed that nutrient addition simultaneously decreased AMF diversity and abundance belowground and plant diversity aboveground at the global scale. The decreases in AMF diversity and abundance associated with nutrient addition were more pronounced with increasing experimental duration, mean annual temperature (MAT) and mean annual precipitation (MAP). Nutrient addition-induced changes in soil pH and available phosphorus (P) predominantly regulated the responses of AMF diversity and abundance. Furthermore, AMF diversity correlated with ecosystem multifunctionality under nutrient addition worldwide. Our findings identify the negative effects of nutrient enrichment on AMF and plant diversity and suggest that AMF diversity is closely linked with ecosystem function. This study offers an important advancement in our understanding of plant-AMF interactions and their likely responses to ongoing global change.


Asunto(s)
Micorrizas , Ecosistema , Hongos , Nitrógeno/análisis , Nutrientes , Raíces de Plantas/química , Suelo , Microbiología del Suelo
15.
New Phytol ; 232(4): 1648-1660, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418102

RESUMEN

Leaf functional traits and their covariation underlie plant ecological adaptations along environmental gradients, but there is limited information on the global covariation patterns of key leaf construction traits. To explore how leaf construction traits co-vary across diverse climate and soil environmental conditions, we compiled a global dataset including cell wall mass per unit leaf mass (CWmass ), leaf carbon (C) and calcium (Ca) concentrations, and specific leaf area (SLA) for 2348 angiosperm species from 340 sites world-wide. Our results demonstrated negative correlations between leaf C and Ca concentrations and between leaf C and SLA across diverse nongraminoid angiosperms. Leaf C concentration increased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP) and with decreasing soil pH and calcium carbonate (CaCO3 ) concentration, whereas leaf Ca concentration and SLA exhibited the opposite responses to these environmental variables. The covariations of leaf Ca-C and of leaf SLA-C were stronger in habitats with lower MAT and MAP, and/or higher soil CaCO3 content. This global-scale analysis demonstrates that the leaf C and Ca concentrations and SLA together govern the C and biomass investment strategies in leaves of nongraminoids. We conclude that environmental conditions strongly shape leaf construction traits and their covariation patterns.


Asunto(s)
Clima , Suelo , Carbono , Ecosistema , Hojas de la Planta
16.
Glob Chang Biol ; 27(16): 3846-3858, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993581

RESUMEN

Global environmental changes have strongly affected forest demographic rates, particularly amplified tree mortality in high latitude forests (e.g., two to five times greater mortality probability over the half-century). Although forest functional composition is critical for multitrophic biodiversity and ecosystem functioning, it remains unclear how functional composition has changed over time across large high latitude regions, which have been warming twice the rate of the globe as a whole. Using extensive spatial and long-term forest inventory data (17,107 plots monitored 1951-2016) across Canada, we found that after accounting for stand age-dependent functional shifts, functional composition shifted toward fast-growing deciduous broadleaved trees and higher drought tolerance over time. The temporal shift toward deciduous broadleaved trees was consistent across the baseline climate. However, over the study period, drought tolerance increased (or shade tolerance decreased) by 300% in colder boreal regions, while drought tolerance did not shift significantly in warmer temperate climates. A further analysis accounting for temporal changes in atmospheric CO2 , temperature, and water availability indicated that the functional composition of colder regions shifted toward drought tolerance more rapidly with rising CO2 than warmer regions, suggesting the greater vulnerability of boreal forests than temperate forests under ongoing global environmental changes. Future ecosystem management practices should consider spatial differences in functional responses to global environmental change, focusing on high latitude forests experiencing higher rates of warming and compositional changes.


Asunto(s)
Cambio Climático , Ecosistema , Canadá , Bosques , Taiga
17.
Glob Chang Biol ; 27(6): 1170-1180, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33336457

RESUMEN

Soil organic carbon (SOC) is the largest carbon sink in terrestrial ecosystems and plays a critical role in mitigating climate change. Increasing reactive nitrogen (N) in ecosystems caused by anthropogenic N input substantially affects SOC dynamics. However, uncertainties remain concerning the effects of N addition on SOC in both organic and mineral soil layers over time at the global scale. Here, we analysed a large empirical data set spanning 60 years across 369 sites worldwide to explore the temporal dynamics of SOC to N addition. We found that N addition significantly increased SOC across the globe by 4.2% (2.7%-5.8%). SOC increases were amplified from short- to long-term N addition durations in both organic and mineral soil layers. The positive effects of N addition on SOC were independent of ecosystem types, mean annual temperature and precipitation. Our findings suggest that SOC increases largely resulted from the enhanced plant C input to soils coupled with reduced C loss from decomposition and amplification was associated with reduced microbial biomass and respiration under long-term N addition. Our study suggests that N addition will enhance SOC sequestration over time and contribute to future climate change mitigation.


Asunto(s)
Carbono , Suelo , Secuestro de Carbono , Ecosistema , Nitrógeno/análisis
18.
Ecol Lett ; 23(1): 79-87, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631491

RESUMEN

Increases in niche complementarity have been hypothesised to reduce the intensity of interspecific competition within natural forests. In regions currently experiencing potentially enhanced growth under global environmental change, niche complementarity may become even more beneficial. However, few studies have provided direct evidence of this mechanism. Here, we use data from 180 permanent sample plots in Manitoba, Canada, with a full spatial mapping of all stems, to show that complementarity effects on average increased with neighbourhood competition intensity and temporally rising CO2 , warming and water availability. Importantly, complementarity effects increased with both shade tolerance and phylogenetic dissimilarity between the focal tree and its neighbours. Our results provide further evidence that increasing stand functional and phylogenetic diversity can improve individual tree productivity, especially for individuals experiencing intense competition and may offer an avenue to maintain productivity under global environmental change.


Asunto(s)
Biodiversidad , Taiga , Canadá , Bosques , Filogenia
19.
Glob Chang Biol ; 26(6): 3429-3442, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32215999

RESUMEN

CO2 fluxes from wood decomposition represent an important source of carbon from forest ecosystems to the atmosphere, which are determined by both wood traits and climate influencing the metabolic rates of decomposers. Previous studies have quantified the effects of moisture and temperature on wood decomposition, but these effects were not separated from the potential influence of wood traits. Indeed, it is not well understood how traits and climate interact to influence wood CO2 fluxes. Here, we examined the responses of CO2 fluxes from dead wood with different traits (angiosperm and gymnosperm) to 0%, 35%, and 70% rainfall reduction across seasonal temperature gradients. Our results showed that drought significantly decreased wood CO2 fluxes, but its effects varied with both taxonomical group and drought intensity. Drought-induced reduction in wood CO2 fluxes was larger in angiosperms than gymnosperms for the 35% rainfall reduction treatment, but there was no significant difference between these groups for the 70% reduction treatment. This is because wood nitrogen density and carbon quality were significantly higher in angiosperms than gymnosperms, yielding a higher moisture sensitivity of wood decomposition. These findings were demonstrated by a significant positive interaction effect between wood nitrogen and moisture on CO2 fluxes in a structural equation model. Additionally, we ascertained that a constant temperature sensitivity of CO2 fluxes was independent of wood traits and consistent with previous estimates for extracellular enzyme kinetics. Our results highlight the key role of wood traits in regulating drought responses of wood carbon fluxes. Given that both climate and forest management might extensively modify taxonomic compositions in the future, it is critical for carbon cycle models to account for such interactions between wood traits and climate in driving dynamics of wood decomposition.


Asunto(s)
Sequías , Madera , Carbono , Ciclo del Carbono , Dióxido de Carbono , Ecosistema
20.
Glob Chang Biol ; 26(4): 2534-2543, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31873968

RESUMEN

Carbon (C) and nitrogen (N) are the primary elements involved in the growth and development of plants. The C:N ratio is an indicator of nitrogen use efficiency (NUE) and an input parameter for some ecological and ecosystem models. However, knowledge remains limited about the convergent or divergent variation in the C:N ratios among different plant organs (e.g., leaf, branch, trunk, and root) and how evolution and environment affect the coefficient shifts. Using systematic measurements of the leaf-branch-trunk-root of 2,139 species from tropical to cold-temperate forests, we comprehensively evaluated variation in C:N ratio in different organs in different taxa and forest types. The ratios showed convergence in the direction of change but divergence in the rate of change. Plants evolved toward lower C:N ratios in the leaf and branch, with N playing a more important role than C. The C:N ratio of plant organs (except for the leaf) was constrained by phylogeny, but not strongly. Both the change of C:N during evolution and its spatial variation (lower C:N ratio at midlatitudes) help develop the adaptive growth hypothesis. That is, plants with a higher C:N ratio promote NUE under strong N-limited conditions to ensure survival priority, whereas plants with a lower C:N ratio under less N-limited environments benefit growth priority. In nature, larger proportion of species with a high C:N ratio enabled communities to inhabit more N-limited conditions. Our results provide new insights on the evolution and drivers of C:N ratio among different plant organs, as well as provide a quantitative basis to optimize land surface process models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA