RESUMEN
Surface water plays a crucial role in the ecological environment and societal development. Remote sensing detection serves as a significant approach to understand the temporal and spatial change in surface water series (SWS) and to directly construct long-term SWS. Limited by various factors such as cloud, cloud shadow, and problematic satellite sensor monitoring, the existent surface water mapping datasets might be short and incomplete due to losing raw information on certain dates. Improved algorithms are desired to increase the completeness and quality of SWS datasets. The present study proposes an automated framework to detect SWS, based on the Google Earth Engine and Landsat satellite imagery. This framework incorporates implementing a raw image filtering algorithm to increase available images, thereby expanding the completeness. It improves OTSU thresholding by replacing anomaly thresholds with the median value, thus enhancing the accuracy of SWS datasets. Gaps caused by Landsat7 ETM + SLC-off are respired with the random forest algorithm and morphological operations. The results show that this novel framework effectively expands the long-term series of SWS for three surface water bodies with distinct geomorphological patterns. The evaluation of confusion matrices suggests the good performance of extracting surface water, with the overall accuracy ranging from 0.96 to 0.97, and user's accuracy between 0.96 and 0.98, producer's accuracy ranging from 0.83 to 0.89, and Matthews correlation coefficient ranging from 0.87 to 0.9 for several spectral water indices (NDWI, MNDWI, ANNDWI, and AWEI). Compared with the Global Reservoirs Surface Area Dynamics (GRSAD) dataset, our constructed datasets promote greater completeness of SWS datasets by 27.01%-91.89% for the selected water bodies. The proposed framework for detecting SWS shows good potential in enlarging and completing long-term global-scale SWS datasets, capable of supporting assessments of surface-water-related environmental management and disaster prevention.
Asunto(s)
Monitoreo del Ambiente , Agua , Monitoreo del Ambiente/métodos , Imágenes Satelitales , Ambiente , AlgoritmosRESUMEN
The Yarlung Tsangpo River Basin is characterized by its intricate topography and a significant presence of erosive materials. These often coincide with heavy localized precipitation, resulting in pronounced hydraulic erosion and geological hazards in mountainous regions. To tackle this challenge, we integrated the RUSLE-TLSD (Revised Universal Soil Loss Equation-Transportation-limited sediment delivery) model with InSAR (Interferometric Synthetic Aperture Radar) data, aiming to explore the sediment transport process and pinpoint hazard-prone sites within mountainous small watershed. The RUSLE-TLSD model aids in evaluating multi-year sediment transport dynamics in mountainous zones. And, the InSAR data precisely delineates changes in sediment scouring and siltation at sites vulnerable to hazards. Our research estimates that the potential average soil erosion within the watershed stands at 52.33 t/(hm2 a), with a net soil erosion of 0.69 t/(hm2 a), the sediment transport pathways manifest within the watershed's gullies and channels. Around 4.32% of the watershed area undergoes sedimentation, predominantly at the base of slopes and within channels. Notably, areas (d) and (e) emerge as the most susceptible to disasters within the watershed. Further analysis of the InSAR data highlighted four regions in the typical area (e) from 2017 that are either sedimentation- or erosion-prone, referred to as "hotspots." Among them, R1 exhibits a strong interplay between water and sediment, rendering it highly sensitive to environmental factors. In contrast, R4, characterized by a sharp bend in siltation, remains relatively impervious to external elements. The NDVI (normalized difference vegetation index) stands out as the pivotal determinant influencing sediment transport within the watershed, exerting a pronounced impact on the outlet section, especially in spring. By employing this approach, we gained a deeper understanding of sediment transport mechanisms and potential hazards in small watershed in uninformative mountainous areas. This study furnishes a robust scientific framework beneficial for erosion mitigation and disaster surveillance in mountainous watersheds.