Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446258

RESUMEN

Understanding the mechanisms of responses to high temperatures in Arabidopsis will provide insights into how plants may mitigate heat stress under global climate change. And exploring the interconnections of different modification levels in heat stress response could help us to understand the molecular mechanism of heat stress response in Arabidopsis more comprehensively and precisely. In this paper, we combined multiomics analyses to explore the common heat stress-responsive genes and specific heat-responsive metabolic pathways in Arabidopsis leaf, seedling, and seed tissues. We found that genes such as AT1G54050 play a role in promoting proper protein folding in response to HS (Heat stress). In addition, it was revealed that the binding profile of A1B is altered under elevated temperature conditions. Finally, we also show that two microRNAs, ath-mir156h and ath-mir166b-5p, may be core regulatory molecules in HS. Also elucidated that under HS, plants can regulate specific regulatory mechanisms, such as oxygen levels, by altering the degree of CHH methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Multiómica , Respuesta al Choque Térmico/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142547

RESUMEN

M. micrantha has caused huge ecological damage and economic losses worldwide due to its rapid growth and serious invasion. However, the underlying molecular mechanisms of its rapid growth and environmental adaption remain unclear. Here, we performed transcriptome and small RNA sequencing with five tissues of M. micrantha to dissect miRNA-mediated regulation in M. micrantha. WGCNA and GO enrichment analysis of transcriptome identified the gene association patterns and potential key regulatory genes for plant growth in each tissue. The genes highly correlated with leaf and stem tissues were mainly involved in the chlorophyll synthesis, response to auxin, the CAM pathway and other photosynthesis-related processes, which promoted the fast growth of M. micrantha. Importantly, we identified 350 conserved and 192 novel miRNAs, many of which displayed differential expression patterns among tissues. PsRNA target prediction analysis uncovered target genes of both conserved and novel miRNAs, including GRFs and TCPs, which were essential for plant growth and development. Further analysis revealed that miRNAs contributed to the regulation of tissue-specific gene expression in M. micrantha, such as mmi-miR396 and mmi-miR319. Taken together, our study uncovered the miRNA-mRNA regulatory networks and the potential vital roles of miRNAs in modulating the rapid growth of M. micrantha.


Asunto(s)
MicroARNs , Mikania , Clorofila , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , MicroARNs/genética , MicroARNs/metabolismo , Mikania/genética , Mikania/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Mensajero , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA