Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 24, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166626

RESUMEN

BACKGROUND: Transforming growth factor ß (TGF-ß) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-ß superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS: Twelve members of the TGF-ß superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-ß superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-ß members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-ß superfamily. CONCLUSION: Characteristics of the TGF-ß superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.


Asunto(s)
Pectinidae , Animales , Filogenia , Pectinidae/genética , Pectinidae/metabolismo , Genoma , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
2.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588614

RESUMEN

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Interleucina-17/metabolismo , Caspasa 3/metabolismo , Lipopolisacáridos/farmacología , Proteómica , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/patología , Transducción de Señal , Ratones Noqueados , Sepsis/patología , Calgranulina B/genética , Calgranulina B/metabolismo
3.
Mol Pharm ; 21(3): 1038-1055, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38344996

RESUMEN

Antibody drug conjugates (ADCs) have emerged as a new promising class of anti- cancer agents. However, limitations such as higher costs and unavoidable immunogenicity due to their relatively large structures cannot be ignored. Therefore, the development of lightweight drugs such as small molecule-drug conjugates (SMDCs) based on the ADC design idea has become a new option for targeted therapy. SMDCs are derived from the coupling of small-molecule targeting ligands with cytotoxic drugs. They are composed of three parts: small-molecule targeting ligands, cytotoxic molecules, and linkers. Compared with ADCs, SMDCs can be more rapidly and evenly dispersed into tumor tissues, with low cost and no immunogenicity. In this article, we will give a comprehensive review of different types of SMDCs currently under clinical trials to provide ideas and inspirations for the development of clinically applicable SMDCs.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Antígenos , Neoplasias/tratamiento farmacológico
4.
Biomacromolecules ; 25(4): 2587-2596, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38527924

RESUMEN

In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-ß, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.


Asunto(s)
Lacticaseibacillus rhamnosus , Cicatrización de Heridas , Antibacterianos/farmacología , Citocinas , Escherichia coli , Hidrogeles/farmacología
5.
Fish Shellfish Immunol ; 146: 109376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218421

RESUMEN

The limited tolerance of crustacean tissue physiology to a high-fat diet has captured the attention of researchers. Yet, investigations into the physiological response mechanisms of the crustacean intestinal barrier system to a high-fat diet are progressing slowly. Elucidating potential physiological mechanisms and determining the precise regulatory targets would be of great physiological and nutritional significance. This study established a high-fat diet-induced intestinal barrier damage model in Macrobrachium rosenbergii, and systematically investigated the functions of gut microbiota and its functional metabolites. The study achieved this by monitoring phenotypic indicators, conducting 16S rDNA sequencing, targeted metabolomics, and in vitro anaerobic fermentation of intestinal contents. Feeding prawns with control and high-fat diets for 8 weeks, the lipid level of 7 % in the CON diet and 12 % in the HF diet. Results showed that high-fat intake impaired the intestinal epithelial cells, intestinal barrier structure, and permeability of M. rosenbergii, activated the tight junction signaling pathway inhibiting factor NF-κB transcription factor Relish/myosin light chain kinase (MLCK), and suppressed the expression of downstream tight junction proteins zona occludens protein 1 (ZO-1) and Claudin. High-fat intake resulted in a significant increase in abundance of Aeromonas, Enterobacter, and Clostridium sensu stricto 3 genera, while Lactobacillus, Lactococcus, Bacteroides, and Ruminococcaceae UCG-010 genera were significantly decreased. Targeted metabolomics results of bile acids and short-chain fatty acids in intestinal contents and in vitro anaerobic fermentation products showed a marked rise in the abundance of DCA, 12-KetoLCA, 7,12-diketoLCA, and Isovaleric acid, and a significant reduction in the abundance of HDCA, CDCA, and Acetate in the HF group. Pearson correlation analysis revealed a substantial correlation between various genera (Clostridium sensu stricto 3, Lactobacillus, Bacteroides) and secondary metabolites (DCA, HDCA, 12-KetoLCA, Acetate), and the latter was significantly correlated with intestinal barrier function related genes (Relish, ZO-1, MLCK, vitamin D receptor, and ecdysone receptor). These findings indicate that gut microorganisms and their specific bile acids and short-chain fatty acid secondary metabolites play a crucial role in the process of high-fat-induced intestinal barrier damage of M. rosenbergii. Moreover, identifying and targeting these factors could facilitate precise regulation of high-fat nutrition for crustaceans.


Asunto(s)
Microbioma Gastrointestinal , Palaemonidae , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Ácidos Grasos Volátiles , Acetatos
6.
Fish Shellfish Immunol ; 151: 109669, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38849106

RESUMEN

The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.

7.
J Invertebr Pathol ; 206: 108162, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944151

RESUMEN

Decapod iridescent virus 1 (DIV1) stands as a significant pathogen affecting crustaceans, posing a grave threat to the shrimp industries in aquaculture dependent nations. Within the Iridoviridae family, the conserved envelope protein DIV1-168L plays a pivotal role in virion entry. Nonetheless, the host factors that interact with 168L remain unidentified. To address this gap, we established a cDNA library derived from Litopenaeus vannamei gill tissue and conducted yeast two-hybrid screening to identify host factors that interact with 168L. Additionally, we performed co-immunoprecipitation assays to verify the interaction between cuticle protein 8 (CP8) and 168L. Expression pattern analysis revealed the presence of CP8 transcripts in the gill and epidermis. Furthermore, immunohistochemistry results demonstrated the expression of CP8 in gill cells and its localization in the gill filament epithelium. Fluorescence analysis indicated that full-length CP8 colocalized with 168L in the cytoplasm of Sf9 cells. Removal of the signal peptide from the N-terminal of CP8 eliminated its concentration in the cytoplasm. Additionally, CP8 expression was significantly inhibited during DIV1 infection. Therefore, our research contributes to a better understanding of the entry mechanism of iridovirids. The GenBank accession number for the DIV1 sequence is MF197913.1.

8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892450

RESUMEN

Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana.


Asunto(s)
Beauveria , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Reproducción Asexuada , Esporas Fúngicas , Beauveria/genética , Beauveria/crecimiento & desarrollo , Beauveria/patogenicidad , Beauveria/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Reproducción Asexuada/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Virulencia/genética , Perfilación de la Expresión Génica , Estrés Fisiológico , Transcriptoma
9.
BMC Oral Health ; 24(1): 125, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267962

RESUMEN

BACKGROUND: This study aimed to validate the availability of superimposing full-color mandibular digital models (DMs) by the morphological characteristics of vessels in extraction adult patients. METHODS: Twenty-eight adult patients were included, and their DMs were superimposed with pre- and posttreatment cone beam computed tomography (CBCT) and the morphological characteristics of lingual vessels. The measurements of each tooth were compared under the same coordinate system. RESULTS: The ICC results displayed exceptional agreement in intra- and interrater assessments, with scores exceeding 0.891 in the crown for intrarater agreement and scores surpassing 0.888 in the crown for interrater agreement. Furthermore, no statistically significant differences were found in the 2 superimposition methods (P > 0.05). CONCLUSION: The morphological characteristics of vessels under the mucogingival junction in the lingual side of mandible of are stable enough for the superimposition of mandibular DMs in the adult patients undergo orthodontic treatment with premolars extraction.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Atención Odontológica , Adulto , Humanos , Reproducibilidad de los Resultados , Mandíbula/diagnóstico por imagen , Pacientes
10.
BMC Genomics ; 24(1): 72, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774470

RESUMEN

BACKGROUND: Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living in deep-sea hydrothermal vents, cold seeps, and organic falls. The morphology and lifespan of Ridgeia piscesae, which is the only vestimentiferan tubeworm species found in the hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to endemic environment. Recent analyses have revealed the genomic basis of adaptation in three vent- and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and mechanism of adaptation in R. piscesae, a unique species in the family Siboglinidae, remain to be investigated. RESULT: We assembled a draft genome of R. piscesae collected at the Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis showed that vent-dwelling tubeworms with a higher growth rate had smaller genome sizes than seep-dwelling tubeworms that grew much slower. A strong positive correlation between repeat content and genome size but not intron size and the number of protein-coding genes was identified in these deep-sea tubeworm species. Evolutionary analysis revealed that Ridgeia pachyptila and R. piscesae, the two tubeworm species that are endemic to hydrothermal vents of the eastern Pacific, started to diverge between 28.5 and 35 million years ago. Four genes involved in cell proliferation were found to be subject to positive selection in the genome of R. piscesae. CONCLUSION: Ridgeia pachyptila and R. piscesae started to diverge after the formation of the Gorda/Juan de Fuca/Explorer ridge systems and the East Pacific Rise. The high growth rates of vent-dwelling tubeworms might be derived from their small genome sizes. Cell proliferation is important for regulating the growth rate in R. piscesae.


Asunto(s)
Poliquetos , Animales , Poliquetos/genética , Aclimatación , Adaptación Fisiológica/genética , Evolución Biológica
11.
Microb Ecol ; 86(3): 1856-1868, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36719456

RESUMEN

How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.


Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/microbiología , Agua de Mar/microbiología , Concentración de Iones de Hidrógeno , Bacterias/genética , Microbiota/genética , Carbono , Arrecifes de Coral
12.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36372840

RESUMEN

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Asunto(s)
Micobioma , Humedales , Especies Introducidas , Plantas , Poaceae/fisiología , Suelo/química , Hongos/genética , Microbiología del Suelo , China
13.
Fish Shellfish Immunol ; 138: 108818, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201733

RESUMEN

The signal transducer and activator of transcription (STAT) family members are not only the transcriptional activators, but also play important roles in regulating inflammatory response. Some members have been reported to be involved in innate bacterial and antiviral immunity in aquatic organisms. However, no systematic research on STATs has been found in teleost. In this present study, we characterized six STAT genes in Japanese flounder based on bioinformatics methods, namely PoSTAT1, PoSTAT2, PoSTAT3, PoSTAT4, PoSTAT5 and PoSTAT6. The phylogenetic analysis of STATs in fish indicated that STATs were highly conserved and revealed an absence of STAT5 in a few species. Further analysis of gene structures and motifs showed STAT proteins shared a similar structure and probably had similar functionality in Japanese flounder. The expression profiles of different development stages and tissues demonstrated that PoSTATs exhibited specificity in temporality and spatiality as well as PoSTAT4 was highly expressed in gill. The transcriptome data analysis of E. tarda and temperature stress showed that PoSTAT1 and PoSTAT2 were more respective to these two kinds of stress. In addition, the results also demonstrated that these PoSTATs might regulate immune response in different ways, manifested by up-regulation in E. tarda infection and down-regulation in temperature stress. In a word, this systematic analysis of PoSTATs would provide valuable information about the phylogenetic relationship of STATs in fish species and help understand the role of STAT genes in the immune response of Japanese flounder.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Lenguado , Animales , Inmunidad Innata/genética , Edwardsiella tarda/fisiología , Temperatura , Filogenia , Proteínas de Peces/química , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/veterinaria , Regulación de la Expresión Génica
14.
BMC Cardiovasc Disord ; 23(1): 271, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221463

RESUMEN

BACKGROUND: To investigate the effect of body mass index (BMI) on clinical outcomes after robotic cardiac surgery, and to explore the postoperative obesity paradox. METHODS: The data of 146 patients who underwent robotic cardiac surgery under cardiopulmonary bypass (CPB) from July 2016 to June 2022 in Daping Hospital of Army Medical University were retrospectively analyzed, and their demographic data and related clinical data were statistically analyzed. The mean age was (42.88 ± 13.01) years, 55 (37.67%) were male and 91 (62.33%) were female. Patients were divided into 3 groups according to preoperative BMI: lean group (BMI < 18.5 kg/m2; n = 17; 11.64%), normal group (BMI 18.5 kg/m2 to 23.9 kg/m2; n = 81; 55.48%), and overweight and obese group (BMI ≥ 24 kg/m2; n = 48; 32.88%). Multivariate analysis was performed to compare clinical outcomes across BMI groups. RESULTS: Preoperative data in different BMI groups showed that there were statistically significant differences in age, height, weight, body surface area (BSA), diabetes, left atrial anteroposterior diameter (LAD), triglyceride (TG), and high-density lipoprotein (HDL) (all P < 0.05). Postoperative clinical outcomes showed that there was no statistical difference between the lean group and the normal group; the intensive care unit stay and postoperative hospital stay in the overweight and obese group were significantly higher than those in the normal group (P < 0.05), and the risk of postoperative cardiac surgery-related acute kidney injury (CSA-AKI) was significantly increased (P = 0.021); further Multiple Binary Logistic Regression Analysis suggested that preoperative TG (OR = 1.772, 95% CI 1.068-2.942, P = 0.027) and operation time ≥ 300 min (OR = 3.823, 95% CI 1.098-13.308, P = 0.035) were independent risk factors for postoperative CSA-AKI. CONCLUSIONS: Overweight and obese patients had significantly prolonged intensive care unit stay and postoperative hospital stay after robotic cardiac surgery, and significantly increased incidence of postoperative CSA-AKI, which did not support the obesity paradox; preoperative TG and operation time ≥ 300 min were independent risk factors for postoperative CSA-AKI.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Procedimientos Quirúrgicos Robotizados , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Índice de Masa Corporal , Sobrepeso , Paradoja de la Obesidad , Estudios Retrospectivos , Atrios Cardíacos , Obesidad
15.
BMC Musculoskelet Disord ; 24(1): 408, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217900

RESUMEN

BACKGROUND: The purpose of this study was to analyze the efficacy of U-shaped internal fixation for calcaneal tubercle fracture after nearly 3 years of case follow-up and data collection. METHOD: We retrospectively analyzed the collected data from 16 patients with avulsion fracture of calcaneal tubercle between December 2018 and February 2021 at our institute. All patients were required to conform to regular follow up postoperatively. X-ray film was applied to all cases. The American Orthopaedic Foot and Ankle Association (AOFAS) score, Cedell score and the visual analog scale (VAS) were used to evaluate functional results. RESULTS: All patients achieved bone union. The preoperative AOFAS score was 26.34 ± 3.34, which was significantly different from 91.38 ± 6.15 half a year after operation (p = 0.003). The preoperative Cedell score was 31.05 ± 4.18 and the score half a year after operation was 92.17 ± 5.39(p = 0.011). The VAS score was 8.91 ± 1.51 before operation and decreased to 0.58 ± 1.31 half a year after operation (p = 0.014). CONCLUSIONS: In the treatments of calcaneal tubercle fracture, U-shaped internal fixation is a new attempt. Through the short-term follow-up study, we found that its therapeutic effect is excellent, which is a recommended treatment in clinic.


Asunto(s)
Traumatismos del Tobillo , Calcáneo , Traumatismos de los Pies , Fracturas por Avulsión , Fracturas Óseas , Traumatismos de la Rodilla , Humanos , Fracturas por Avulsión/diagnóstico por imagen , Fracturas por Avulsión/cirugía , Estudios de Seguimiento , Estudios Retrospectivos , Resultado del Tratamiento , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Fijación Interna de Fracturas/métodos , Calcáneo/diagnóstico por imagen , Calcáneo/cirugía
16.
Proc Natl Acad Sci U S A ; 117(47): 29775-29785, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33139555

RESUMEN

Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.


Asunto(s)
Domesticación , Evolución Molecular , Carpa Dorada/genética , Selección Artificial/genética , Animales , Mapeo Contig , Conjuntos de Datos como Asunto , Femenino , Proteínas de Peces/genética , Variación Genética , Genoma/genética , Genómica , Hibridación Genética , Masculino , Modelos Animales , Filogenia , Proteínas Tirosina Quinasas/genética
17.
Plant Dis ; 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36774581

RESUMEN

Water lettuce (Pistia stratiotes L.), is one of the emerging invasive weeds for inland water bodies in Asia and become a major problem for local water ecosystem. Biocontrol of water lettuce by mycobiota is being considered as a promising and sustainable method (Kongjornrak et al. 2019). During July 2021, a leaf blight of water lettuce was observed within about 1.5 ha in Shenxi stream (N25°66', E119°05') in Putian, Fujian, China. The disease severity was about 100% with 80% incidence, early symptoms appeared as small irregularly yellow or brown blight, severely infected leaves turned to be rot, then death and sink. Small pieces (5 × 5 mm) of symptomatic leaves were excised and surface disinfected with 75% ethanol and 0.1% HgCl2 solution, air dried and plated on potato dextrose agar (PDA). 3~5 days after incubation at 28°C, six fungal pure cultures showing similar morphology were obtained from the infected leaves. On PDA, colonies were flat, aerial mycelium grew sparsely, most of it grew inside the agar medium, it reverses white to grey to black with age. Hyphae were branched, septate, smooth and hyaline. Conidiophores mostly reduced to conidiogenous cells and setae were not observed. Conidiogenous cells were monoblastic, discrete and solitary, at first hyaline, subspherical, then turning to pale brown, ampulliform, 4.5-10 × 3.5-6 µm in size. Conidia were solitary, globose or ellipsoidal, black, smooth, some of it formed directly from the mycelia, aseptate, 8-12 µm diam (n=10). Genomic DNA was extracted from one of the representative isolate Z1. ITS1/ITS4 (Mills et al. 1992), Bt-2a/Bt-2b (Glass and Donaldson 1995) and EF1-728F/EF-2 (O'Donnell et al. 1998) primer pairs were used to amplify the isolate's internal transcribed spacer (ITS), the Beta-tubulin fragment (TUB) and the partial translation elongation factor (TEF1), respectively. The isolate's sequences were deposited in the GenBank with accession numbers of OM279539 (ITS), OM296034 (TUB) and OM296035 (TEF1). Phylogenetic analysis using maximum likelihood based on the ITS-TUB-TEF1 concatenated sequences from Nigrospora species revealed that isolate Z1 is closely clustered with N. osmanthi strain LC4487. The fungus was identified as N. osmanthi based on the morphological characteristics and molecular analyses (Hao et al. 2020; Wang et al. 2017). Pathogenicity test were performed using twenty inoculated and control plants, respectively. Conidial suspensions (107 CFU/ml) of Z1 isolate were spray-inoculated on the leaves of healthy water lettuce seedlings, while sterile distilled water was used as control. Inoculated and control plants were kept in the differential 50-liter plastic tanks and maintained in a greenhouse at room temperature (19 to 24°C) for one month. Symptoms appeared 7 days post inoculation, which was similar to what occurs in the field. No symptoms occurred on controls. Pathogen was reisolated and confirmed by morphology and molecular analysis. Koch's postulates were conducted twice. N. osmanthi is a pathogenic fungus of many crop plants, such as buckwheat (Shen et al 2021), Java tea (Ismail et al. 2022) or buffalograss (Mei et al. 2019) in Asia and particularly in China. However, to our knowledge, this is the first report of N. osmanthi causing leaf blight on water lettuce. Further studies on how to apply formulated N. osmanthi will be required so that the strain could be effectively used to control water lettuce, moreover, its environmental safety also need a rigorous experimental evaluation.

18.
Clin Oral Investig ; 27(5): 2149-2162, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36738320

RESUMEN

OBJECTIVE: To compare the effectiveness of micro-implant (MI) and conventional anchorage (CA) in vertical control during orthodontic extraction treatment of class II adults and adolescents after pubertal growth peak. MATERIALS AND METHODS: Literature search was conducted through Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang Database, VIP, China Biology Medicine (CBM), and other sources, from inception to December 2021. Randomized clinical trials (RCTs) and controlled clinical trials (CCTs) were included. Mean differences (MDs) with 95% confidence intervals (CIs) were conducted. A meta-analysis concerning change of mandibular plane, vertical change of upper and lower molar, change of occlusal plane, SNB, chin position, and profile was carried out. RESULTS: A total of 10,669 records were identified in the database search, and 19 studies (10 RCTs and 9 CCTs) were included in the final analysis. Compared with CA, MI significantly decreased mandibular plane angle and intruded upper molars. No significant difference was found in vertical change of lower molars, occlusal plane, SNB, chin position, and profile. CONCLUSION: MI seems to be more effective than CA in vertical control during orthodontic extraction treatment of class II adults and adolescents after pubertal growth peak. CLINICAL RELEVANCE: MI should be given priority when considering the vertical control of class II patients, which is beneficial to the counterclockwise rotation of mandible or at least prevention of deterioration of the profile.


Asunto(s)
Implantes Dentales , Maloclusión Clase II de Angle , Métodos de Anclaje en Ortodoncia , Humanos , Adulto , Adolescente , Mandíbula , Diente Molar , Mentón , Maloclusión Clase II de Angle/terapia , Cefalometría
19.
BMC Oral Health ; 23(1): 254, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131215

RESUMEN

OBJECTIVE: This cross-sectional study aimed to investigate the association between periodontitis and osteoporosis among US adults as well as the subgroup of menopausal women. BACKGROUND: Periodontitis and osteoporosis are both chronic inflammatory diseases characterized by local or systemic bone resorption. Since they share many risk factors, and the significant decrease in estrogen along with menopause is unfavorable for both diseases, it's reasonable to assume that there exists some links between the two diseases, especially during the menopause. METHODS: We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2009-2010 and 2013-2014. Periodontitis (defined according to the CDC/AAP definition) and osteoporosis (assessed by the dual-energy radiation absorptiometry) data were available for 5736 participants, and 519 subjects were enrolled in the subgroup of menopausal women aged 45-60 years old. We used binary logistic regression analysis to examine the association between the two diseases both in crude and fully adjusted model. RESULTS: In the fully adjusted model, osteoporosis was significantly associated with an increased risk of periodontal disease (OR:1.66, 95% CI: 1.00-2.77) in the whole population. As to the subgroup of menopausal women, osteoporosis group had an adjusted OR of 9.66 (95% CI: 1.13-82.38) for developing severe periodontitis in the fully adjusted model. CONCLUSIONS: Osteoporosis is significantly associated with periodontitis and the association is even more pronounced in menopausal women with severe periodontitis.


Asunto(s)
Osteoporosis , Periodontitis , Adulto , Humanos , Femenino , Estados Unidos/epidemiología , Persona de Mediana Edad , Estudios Transversales , Encuestas Nutricionales , Osteoporosis/complicaciones , Osteoporosis/epidemiología , Periodontitis/complicaciones , Periodontitis/epidemiología , Factores de Riesgo
20.
Biochem Biophys Res Commun ; 599: 156-163, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35202849

RESUMEN

Primitive Endoderm (PrE) is an extraembryonic structure derived from inner cell mass (ICM) in the blastocysts. Its interaction with the epiblast is critical to sustain embryonic growth and embryonic pattern. In this study, we reported a simple and efficient method to induce the differentiation of mouse Embryonic Stem Cells (mESCs) into PrE cells. In the process of ESC monolayer adherent culture, 1 µM atRA and 10 µM CHIR inducers were used to activate RA and Wnt signaling pathways respectively. After 9 days of differentiation, the proportion of PrE cells was up to 85%. Further studies indicated that Wnt signaling pathway acted as a switch that RA induces mESCs differentiation between SMC and PrE cell. In the presence of only RA signaling, mESCs adopted the fate of smooth muscle cells (SMCs); Simultaneous activation of the Wnt signaling pathway changed the differentiation fate of mESCs into PrE cells. This efficient induction method can provide new cellular resources and models for relevant studies of PrE.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Endodermo/citología , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Células Madre Embrionarias de Ratones/fisiología , Piridinas/farmacología , Pirimidinas/farmacología , Tretinoina/farmacología , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA