Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
2.
Blood ; 143(1): 32-41, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37824804

RESUMEN

ABSTRACT: Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a lethal syndrome because of persistent EBV infection. When diagnosed as CAEBV, EBV infection was observed in multiple hematopoietic lineages, but the etiology of CAEBV is still elusive. Bone marrow and peripheral cells derived from 5 patients with CAEBV, 1 patient with EBV-associated hemophagocytic lymphohistiocytosis, and 2 healthy controls were analyzed. Multiple assays were applied to identify and characterize EBV-infected cells, including quantitative polymerase chain reaction, PrimeFlow, and single-cell RNA-sequencing (scRNA-seq). Based on scRNA-seq data, alterations in gene expression of particular cell types were analyzed between patients with CAEBV and controls, and between infected and uninfected cells. One patient with CAEBV was treated with allogeneic hematopoietic stem cell transplantation (HSCT), and the samples derived from this patient were analyzed again 6 months after HSCT. EBV infected the full spectrum of the hematopoietic system including both lymphoid and myeloid lineages, as well as the hematopoietic stem cells (HSCs) of the patients with CAEBV. EBV-infected HSCs exhibited a higher differentiation rate toward downstream lineages, and the EBV infection had an impact on both the innate and adaptive immunity, resulting in inflammatory symptoms. EBV-infected cells were thoroughly removed from the hematopoietic system after HSCT. Taken together, multiple lines of evidence presented in this study suggest that CAEBV disease originates from the infected HSCs, which might potentially lead to innovative therapy strategies for CAEBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Humanos , Herpesvirus Humano 4/genética , Enfermedad Crónica , Linfohistiocitosis Hemofagocítica/complicaciones , Células Madre Hematopoyéticas
3.
Blood ; 141(25): 3078-3090, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36796022

RESUMEN

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Asunto(s)
Factores de Unión al Sitio Principal , Leucemia Mieloide Aguda , Humanos , Regulación hacia Abajo , Factores de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Edición de ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Leucemia Mieloide Aguda/genética , Adenosina/metabolismo
4.
Diabetes Obes Metab ; 26(6): 2257-2266, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497233

RESUMEN

AIM: Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS: In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS: SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION: This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Homeostasis , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Dieta Alta en Grasa , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Triglicéridos/metabolismo
5.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37674043

RESUMEN

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Masculino , Rotenona/toxicidad , Enfermedades Neuroinflamatorias , PPAR gamma , Ratones Endogámicos C57BL , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Neuronas Dopaminérgicas/patología , Inflamación/patología , Hierro , Modelos Animales de Enfermedad
6.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37674042

RESUMEN

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Ratones , Animales , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Dopamina/metabolismo , Senescencia Celular , Modelos Animales de Enfermedad
7.
Inflammopharmacology ; 32(3): 1721-1742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615278

RESUMEN

Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Enfermedades Inflamatorias del Intestino/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Diferenciación Celular/fisiología , Tejido Adiposo/citología
8.
Angew Chem Int Ed Engl ; 63(21): e202402178, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38480851

RESUMEN

Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.


Asunto(s)
Oxidación-Reducción , ARN , Acilación , ARN/química , ARN/metabolismo , Humanos , Disulfuros/química
9.
Small ; 19(38): e2301513, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37116087

RESUMEN

Parallel nanomaterials possess unique properties and show potential applications in industry. Whereas, vertically aligned 2D nanomaterials have plane orientations that are generally chaotic. Simultaneous control of their growth direction and spatial orientation for parallel nanosheets remains a big challenge. Here, a facile preparation of vertically aligned parallel nanosheet arrays of aluminum-cobalt oxide is reported via a collaborative dealloying and hydrothermal method. The parallel growth of nanosheets is attributed to the lattice-matching among the nanosheets, the buffer layer, and the substrate, which is verified by a careful transmission electron microscopy study. Furthermore, the aluminum-cobalt oxide nanosheets exhibit high-temperature ferromagnetism with a 919 K Curie temperature and a 5.22 emu g-1 saturation magnetization at 300 K, implying the potential applications in high-temperature ferromagnetic fields.

10.
Microb Pathog ; 182: 106275, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516211

RESUMEN

Salmonella is an important zoonotic and foodborne pathogen that can infect humans and animals, causing severe concerns about food safety and a heavy financial burden worldwide. The pathogen can adhere to living and abiotic surfaces by forming biofilms, which increases the risk of transmission and infection. In this study, we investigated the biofilm-forming ability of 243 Salmonella strains of 36 serotypes from different sources in China using microplate crystal violet staining method. The results showed that 99.6% tested strains, with the exception of one strain of S. Thompson, were capable of forming biofilms. The strains with the biofilm-forming ability of strong, medium and weak accounted for 2.88%, 24.28% and 72.43%, respectively. The strains of S. Havana and S. Hvittingfoss had the strongest biofilm-forming ability, with the OD570 of 0.81 ± 0.02 and 0.81 ± 0.38, respectively, while the strains of S. Agona and S. Bovismorbificans had the weakest biofilm-forming ability, with the OD570 of 0.16 ± 0.02 and 0.15 ± 0.00, respectively. Furthermore, statistical analysis results demonstrated that isolation of source had no effect on the biofilm formation ability, while the detection rates of pefABCD and ddhC were positively correlated with the biofilm formation ability of Salmonella. In particular, the detection rate of ddhC gene was more than 60% in the biofilm forming strains. These findings have important guiding significance for the investigation of pathogenesis, as well as the prevention and control of salmonellosis.


Asunto(s)
Salmonella enterica , Humanos , Animales , Salmonella enterica/genética , Serogrupo , Biopelículas , Salmonella , China
11.
Chem Rec ; 23(5): e202300004, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36988011

RESUMEN

Since the invention of lithium-ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium-ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium-ion batteries. In this review, we described the development from lithium-metal batteries to lithium-ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge-discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field.

12.
Cancer Treat Res ; 190: 143-179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38113001

RESUMEN

RNA epigenetics, or epitranscriptome, is a growing group of RNA modifications historically classified into two categories: RNA editing and RNA modification. RNA editing is usually understood as post-transcriptional RNA processing (except capping, splicing and polyadenylation) that changes the RNA nucleotide sequence encoded by the genome. This processing can be achieved through the insertion or deletion of nucleotides or deamination of nucleobases, generating either standard nucleotides such as uridine (U) or the rare nucleotide inosine (I). Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded RNAs (dsRNAs). Inosine mimics guanosine (G) in base pairing with cytidine (C), thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by the splicing and translation machineries, resulting in mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causes and regulates "RNA mutations" in both normal physiology and diseases including cancer. In this chapter, we reviewed current paradigms and developments in the field of A-to-I RNA editing in the context of cancer.


Asunto(s)
Neoplasias , ARN , Animales , Humanos , ARN/genética , ARN/metabolismo , Edición de ARN , Neoplasias/genética , Nucleótidos/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina/genética , Adenosina/metabolismo , Guanosina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
13.
Mol Cell ; 57(4): 662-673, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25601757

RESUMEN

The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas/fisiología , Proteínas WT1/fisiología , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HL-60 , Humanos , Proteína 2 Inhibidora de la Diferenciación/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
14.
Altern Ther Health Med ; 29(2): 191-199, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480680

RESUMEN

Context: In the process of combating the coronavirus disease 2019 (COVID-19) epidemic, medical personnel were at the forefront of the fight. As the future medical workforce, medical students often experienced firsthand how their seniors and teachers had to commit to working hard in combating the epidemic. Many were directly involved in the front line of the fight and that experience could easily have affected their intention to seek employment in a medically related career. Objective: The study intended to evaluate the impact of the COVID-19 pandemic on Chinese medical students' employment intentions and the factors associated with them to put forward relevant suggestions to provide a basis for medical education in the future. Design: The research team conducted a cross-sectional study, using an anonymous online questionnaire. Setting: The study took place in many provinces and cities in China and was conducted in an online questionnaire. Participants: Participants were 1114 college students studying clinical medicine, college students studying nursing, and students interning during standardized resident training, medical interns. Outcome Measures: The participants completed a self-administered questionnaire, which investigated their psychological statuses related to anxiety and depression as well as COVID-19's impact on their intentions related to job searches, regarding their willingness to engage in clinical or basic research in epidemic-related specialties and epidemic-related work. Results: Compared to college students studying clinical medicine, the employment intentions of nursing students and medical interns were more vulnerable to the epidemic. Females and nursing students were more reluctant to choose clinical work, and the choice was associated with depression. Nursing college students and medical interns were significantly less willing to engage in infection medicine, respiratory medicine, and intensive care medicine (all P < .001). Medical students with a bachelor's degree and postgraduate degrees were significantly less willing to engage in infection medicine and respiratory medicine (all P < .001), but medical students from regions with stable epidemics were more willing to engage in intensive care medicine. Medical students with a bachelor's degree were significantly less likely to be involved in epidemiology-related work than undergraduate students, and students from severe epidemic regions were significantly less willing to work in isolation wards or to go to Wuhan as volunteers. Conclusions: Participants' psychological statuses related to anxiety and depression, genders, degrees, current educational statuses, and regions affected employment intentions during the epidemic.


Asunto(s)
COVID-19 , Estudiantes de Medicina , Humanos , Masculino , Femenino , Intención , Estudiantes de Medicina/psicología , Estudios Transversales , COVID-19/epidemiología , Pandemias , Pueblos del Este de Asia , Empleo , Encuestas y Cuestionarios , China/epidemiología
15.
Water Sci Technol ; 87(8): 1893-1906, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119162

RESUMEN

The advanced treatment of secondary effluents was investigated by employing heterogeneous catalytic ozonation integrated with a biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (MnxCuyOz/γ-Fe2O3) significantly enhanced the performance of pollutant removal and broke up macromolecules into molecular substances by the generated hydroxyl radicals. These molecular substances were easily absorbed by microorganisms in the microbial membrane reactor. In the BAF process, chemical oxygen demand (COD) (chemical oxygen demand) decreased from 54.26 to 32.56 mg/L, while in catalytic ozonation coupled with the BAF, COD could be reduced to 14.65 mg/L (removal ratio 73%). Under the same condition, NH4+-N decreased from 77.43 to 22.69 mg/L and 15.73 mg/L (removal ratio 70%) in the BAF and the catalytic ozonation coupled with BAF, respectively. In addition, the model that highly correlated influent COD to effluent COD and reactor height for filler could predict the removal ratio of COD of the BAF system. Based on the microbial community analysis, ozone in the solution had a certain screening effect on microorganisms, which helped to better adapt to the ozone-containing environment. Therefore, the integrated process with its efficient, economic, and sustainable advantages was suitable for the advanced treatment of secondary effluents.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Contaminantes Químicos del Agua/química , Ozono/química , Catálisis , Análisis de la Demanda Biológica de Oxígeno , Purificación del Agua/métodos
16.
J Cell Physiol ; 237(3): 1790-1803, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34796915

RESUMEN

Excessive activity of osteoclasts contributes to skeletal diseases such as osteoporosis and osteolysis. However, current drugs targeting osteoclast have various deficiencies, placing natural compounds as substitutions of great potential. Roburic acid (RA) is a triterpenoid exacted from Radix Gentianae Macrophyllae, which exhibits inhibitory effects on inflammation and oxidation. By employing an in vitro osteoclastogenesis model, this study investigates the effects and mechanisms of RA on intracellular signaling induced by receptor activator of nuclear factor-κB ligand (RANKL). As expected, RA at a concentration scope from 1 to 10 µM dampened the osteoclast differentiation of bone marrow macrophages (BMMs) but without cell toxicity. Interestingly, RA showed no effect on osteoblastogenesis in vitro. Furthermore, RA mitigated F-actin ring formation, hydroxyapatite resorption, and gene expression in osteoclasts. Mechanistically, RA suppressed TNF receptor-associated factor 6 (TRAF6), the crucial adaptor protein following RANKL-RANK binding. On the one hand, RA downregulated the nuclear factor-κB (NF-κB) activity, extracellular regulated protein kinases (ERK) phosphorylation, and calcium oscillations. On the other hand, RA upregulated the antioxidative response element (ARE) response and the protein expression of heme oxygenase (HO)-1. These upstream alterations eventually led to the suppression of the nuclear factor of activated T cells 1 (NFATc1) activity and the expression of proteins involved in osteoclastogenesis and bone resorption. Furthermore, by using an ovariectomized (OVX) mice model, RA was found to have therapeutic effects against bone loss. On account of these findings, RA could be used to restrain osteoclasts for treating osteoporosis and other osteolytic diseases.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Señalización del Calcio , Diferenciación Celular , Femenino , Humanos , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Ligando RANK/farmacología
17.
Dev Neurosci ; 44(3): 121-130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34937039

RESUMEN

BACKGROUND: Spinal cord ischemia/reperfusion injury (SCIRI) is usually caused by spinal surgery or aortic aneurysm surgery and can eventually lead to paralysis or paraplegia and neurological dysfunction. Exosomes are considered as one of the most promising therapeutic strategies for SCIRI as they can pass the blood-spinal barrier. Previous studies have proved that exosomes secreted by osteocytes have a certain slowing effect on SCIRI. AIM: We aimed to explore the effect of osteoblast secreted exosomes on SCIRI. METHODS: First, neurons and osteoblasts were co-cultured under different conditions. GEO database was utilized to detect the expression of miR-23a-3p in osteoblast exosomes. SCIRI cells were treated with exosomes, and the detection was taken to prove whether miR-23a-3p could slow the progression of SCIRI. Downstream gene and the potential regulatory mechanism were explored through database and functional experiments. RESULTS: MiR-23a-3p was highly expressed in exosomes and it slowed down the process of SCIRI. Downstream mRNA KLF3 could bind to miR-23a-3p and was highly expressed in IRI. Moreover, CCNL2 was regulated by KLF3 and was highly expressed in IRI. Rescue experiments verified that miR-23a-3p suppressed the transcription of CCNL2 by targeting KLF3. CONCLUSION: Exosome miR-23a-3p from osteoblast alleviates SCIRI by down-regulating KLF3-activated CCNL2 transcription.


Asunto(s)
Ciclinas , Exosomas , MicroARNs , Daño por Reperfusión , Isquemia de la Médula Espinal , Factores de Transcripción , Línea Celular , Ciclinas/genética , Ciclinas/metabolismo , Exosomas/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Daño por Reperfusión/metabolismo , Isquemia de la Médula Espinal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Ann Hematol ; 101(11): 2461-2470, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36094533

RESUMEN

We performed a single-center, prospective trial to investigate the efficacy of PEG- asparaginase combined with liposomal doxorubicin, etoposide, and methylprednisolone (L-DEP) as an initial therapy for Epstein-Barr virus driven hemophagocytic lymphohistiocytosis (EBV-HLH). None of the patients received any chemotherapy after the diagnosis of EBV-HLH between September 2019 and September 2021. The efficacy was evaluated 2 weeks and 4 weeks after initiating L-DEP primary therapy. Forty-seven eligible patients with EBV-HLH were enrolled. The overall response rate (ORR) was 80.9% (38/47, 12 in clinical CR, 26 in clinical PR) at 2 weeks after the L-DEP regimen; at 4 weeks, the ORR was 75.6% (34/45, 21 in clinical CR, 13 in clinical PR). EBV-DNA loads in blood and plasma were significantly decreased 2 and 4 weeks after the L-DEP regimen (P < 0.001). Ferritin, soluble CD25 (sCD25), triglycerides (TGs), and ultrasonic spleen longitude, and thickness were all decreased significantly 2 and 4 weeks after the L-DEP regimen (P < 0.001). Thus, the L-DEP regimen is an effective initial therapy for EBV-HLH. However, the L-DEP regimen was poor in terms of long-term prognosis and that allo-HSCT should be received as soon as possible once a complete response is achieved.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Adulto , Asparaginasa/uso terapéutico , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Etopósido/uso terapéutico , Ferritinas , Herpesvirus Humano 4 , Humanos , Linfohistiocitosis Hemofagocítica/terapia , Metilprednisolona/uso terapéutico , Estudios Prospectivos , Triglicéridos/uso terapéutico
19.
Circ Res ; 127(6): 761-777, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32529949

RESUMEN

RATIONALE: Identifying genetic markers for heterogeneous complex diseases such as heart failure is challenging and requires prohibitively large cohort sizes in genome-wide association studies to meet the stringent threshold of genome-wide statistical significance. On the other hand, chromatin quantitative trait loci, elucidated by direct epigenetic profiling of specific human tissues, may contribute toward prioritizing subthreshold variants for disease association. OBJECTIVE: Here, we captured noncoding genetic variants by performing epigenetic profiling for enhancer H3K27ac chromatin immunoprecipitation followed by sequencing in 70 human control and end-stage failing hearts. METHODS AND RESULTS: We have mapped a comprehensive catalog of 47 321 putative human heart enhancers and promoters. Three thousand eight hundred ninety-seven differential acetylation peaks (FDR [false discovery rate], 5%) pointed to pathways altered in heart failure. To identify cardiac histone acetylation quantitative trait loci (haQTLs), we regressed out confounding factors including heart failure disease status and used the G-SCI (Genotype-independent Signal Correlation and Imbalance) test1 to call out 1680 haQTLs (FDR, 10%). RNA sequencing performed on the same heart samples proved a subset of haQTLs to have significant association also to gene expression (expression quantitative trait loci), either in cis (180) or through long-range interactions (81), identified by Hi-C (high-throughput chromatin conformation assay) and HiChIP (high-throughput protein centric chromatin) performed on a subset of hearts. Furthermore, a concordant relationship between the gain or disruption of TF (transcription factor)-binding motifs, inferred from alternative alleles at the haQTLs, implied a surprising direct association between these specific TF and local histone acetylation in human hearts. Finally, 62 unique loci were identified by colocalization of haQTLs with the subthreshold loci of heart-related genome-wide association studies datasets. CONCLUSIONS: Disease and phenotype association for 62 unique loci are now implicated. These loci may indeed mediate their effect through modification of enhancer H3K27 acetylation enrichment and their corresponding gene expression differences (bioRxiv: https://doi.org/10.1101/536763). Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Epigenoma , Variación Genética , Insuficiencia Cardíaca/genética , Histonas/genética , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Inmunoprecipitación de Cromatina , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Femenino , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Sitios de Carácter Cuantitativo
20.
Cardiovasc Drugs Ther ; 36(1): 45-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32607820

RESUMEN

BACKGROUND: Acute ST-elevation myocardial infarction (STEMI) is associated with a high incidence of complications as well as a considerable hospitalization rate and economic burden. Preliminary evidence suggests that remote ischemic conditioning (RIC) is a promising non-invasive intervention that may effectively and safely reduce myocardial infarct size, subsequent cardiac events and complications, and mortality. However, RIC's cardio-protective effect remains under debate, especially for single timepoint RIC programs. Adequately powered large-scale randomized controlled trials investigating clinical outcomes are thus needed to clarify the role of full disease cycle RIC programs. METHODS: The intelligent "Internet Plus"-based full disease cycle remote ischemic conditioning (i-RIC) trial is a pragmatic, multicenter, randomized controlled, parallel group, clinical trial. The term, intelligent "Internet Plus"-based full disease cycle, refers to smart devices aided automatic and real-time monitoring of remote ischemic pre-, per- or post-conditioning intervention for patients with STEMI undergoing percutaneous coronary intervention (PCI). Based on this perspective, 4700 STEMI patients from five hospitals in China will be randomized to a control and an intervention group. The control group will receive PCI and usual care, including pharmacotherapy, before and after PCI. The intervention group will receive pre-, per-, and post-operative RIC combined with long-term i-RIC over a one-month period in addition. A smartphone application, an automated cuff inflation/deflation device and "Internet Plus"-based administration will be used in the long-term phase. The primary outcome is the combined cardiac death or hospitalization for heart failure rate. Secondary outcomes include clinical and functional outcomes: major adverse cardiac and cerebrovascular events rate, all-cause mortality, myocardial reinfarction rate, readmission rate for heart failure and ischemic stroke rate, unplanned revascularization rate, plasma concentration of myocardial infarction-related key biomarkers, infarct size, cardiac function, cardiopulmonary endurance, health-related quality of life, total hospital length of stay, total medical cost, and compliance with treatment regime. DISCUSSION: The i-RIC trial is designed to test the hypothesis that clinical and functional outcomes can be improved with the i-RIC program in STEMI patients undergoing PCI. The concept of RIC is expected to be enhanced with this intelligent "Internet Plus"-based program focusing on the full disease cycle. If the i-RIC program results in superior improvement in primary and secondary outcomes, it will offer an innovative treatment option for STEMI patients and form the basis of future recommendations. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry ( http://www.chictr.org.cn ): ChiCTR2000031550, 04 April 2020.


Asunto(s)
Poscondicionamiento Isquémico/métodos , Precondicionamiento Isquémico Miocárdico/métodos , Intervención Coronaria Percutánea/métodos , Infarto del Miocardio con Elevación del ST/terapia , China , Humanos , Internet , Aplicaciones Móviles , Teléfono Inteligente , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA