Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(10): 6937-6944, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31558028

RESUMEN

The permeabilization of organelle membranes by BCL-2 family proteins is a pivotal step during the regulation of apoptosis; the underlying mechanisms remain unclear. Based on the fluorescence attenuation by graphene oxide, we developed a single-molecule imaging method termed surface-induced fluorescence attenuation (smSIFA), which enabled us to track both vertical and lateral kinetics of singly labeled BCL-2 family protein tBid during membrane permeabilization. We found that tBid monomers lie shallowly on the lipid bilayer, where they self-assemble to form oligomers. During the initiation phase of self-assembly, the two central hydrophobic helices (α6 and α7) of tBid insert halfway into the phospholipid core, while the other helices remain on the surface. In oligomerized tBid clusters, α6 and α7 prefer to float up, and the other helices may sink to the bottom of the membrane and cause the formation of transient two-dimensional, micelle-like pore structures, which are responsible for the permeabilization of membranes and the induction of apoptosis. Our results shed light on the understanding of tBid-induced apoptosis, and this nanotechnology-based smSIFA approach could be used to dissect the kinetic interaction between membrane protein and lipid bilayer at the single-molecule level with subnanometer precision.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/química , Membrana Dobles de Lípidos/química , Animales , Permeabilidad de la Membrana Celular , Fluorescencia , Grafito/química , Ratones , Modelos Moleculares , Conformación Proteica en Hélice alfa , Multimerización de Proteína
2.
Langmuir ; 31(33): 9105-14, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26250646

RESUMEN

Cross-linking of specific lipid components by proteins mediates transmembrane signaling and material transport. In this work, we conducted coarse-grained simulation to investigate the interactions of binding units of chorela toxin (CTB) with mixed ganglioside GM1 and dipalmitoylphosphatidylcholine (DPPC) lipid bilayer membrane. We determine that the binding of CTB pentamers cross-links GM1 molecules into protein-sized nanodomains that have distinct lipid order compared with the bulk. The toxin in the nanodomain partially penetrates into the membrane. The local disordering can also transmit across the membrane via lipid coupling. Comparison simulations on CTB binding to a membrane that is composed of various lipid components demonstrate that several factors are responsible for the nanodomain formation: (a) the negatively charged headgroup of a GM1 receptor is responsible for the multivalent binding; (b) the head groups being full of hydrogen-bonding donors and receptors stabilize the GM1 cluster itself and ensure the toxin binding with high affinity; and


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Toxina del Cólera/química , Gangliósido G(M1)/química , Membrana Dobles de Lípidos/química
3.
Int J Mol Sci ; 14(4): 7932-58, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23579956

RESUMEN

We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Modelos Químicos
4.
J Phys Chem B ; 119(3): 850-60, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25062757

RESUMEN

Antimicrobial peptides with diverse cationic charges, amphiphathicities, and secondary structures possess a variety of antimicrobial activities against bacteria, fungi, and other generalized targets. To illustrate the relationship between the structures of these peptide and their actions at microscopic level, we present systematic coarse-grained dissipative particle dynamics simulations of eight types of antimicrobial peptides with different secondary structures interacting with a lipid bilayer membrane. We find that the peptides use multiple mechanisms to exert their membrane-disruptive activities: A cationic charge is essential for the peptides to selectively target negatively charged bacterial membranes. This cationic charge is also responsible for promoting electroporation. A significant hydrophobic portion is necessary to disrupt the membrane through formation of a permeable pore or translocation. Alternatively, the secondary structure and the corresponding rigidity of the peptides determine the pore structure and the translocation pathway.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/citología , Membrana Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Bacterias/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Datos de Secuencia Molecular , Porosidad , Estabilidad Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA