Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401528, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634219

RESUMEN

The role of tannins (TA), a well-known abundant and ecologically friendly chelating ligand, in metal capture has long been studied. Different kinds of TA-containing adsorbents are synthesized for uranium capture, while most adsorbents suffer from unfavorable adsorption kinetics. Herein, the design and preparation of a TA-containing 2D crosslinked network adsorbent (TANP) is reported. The ≈1.8-nanometer-thick TANP films curl up into micrometer-scale pores, which contribute to fast mass transfer and full exposure of active sites. The coordination environment of uranyl (UO2 2+) ions is explored by integrated analysis of U L3-edge XANES and EXAFS. Density functional theory calculations indicate the energetically favorable UO2 2+ binding. Consequently, TANP with excellent adsorption kinetics presents a high uranium capture capacity (14.62 mg-U g-Ads-1) and a high adsorption rate (0.97 mg g-1 day-1) together with excellent selectivity and biofouling resistance. Life cycle assessment and cost analysis demonstrate that TANP has tremendous potential for application in industrial-scale uranium extraction from seawater.

2.
Pak J Med Sci ; 40(3Part-II): 455-460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356811

RESUMEN

Objective: To investigate the effect of micro-implant anchorage combined with a clear aligner on the efficiency of mandibular molar distalization and the protection of anterior teeth anchorage, provide reference for clinical scheme design. Methods: This is a prospective study. Seventeen patients who were treated in the Orthodontics Department of the Hospital of Stomatology affiliated to Fujian Medical University from 2019 to 2021 and used Invisalign clear aligners to move mandibular molars distally were included and divided into two groups according to anchorage types: Group-A and Group-B. Group-A (ten cases) were treated without micro-implant anchorage, while Group-B (seven cases) were treated with micro-implant anchorage nails for enhanced anchorage. The effect of micro-implant anchorage on crown and root distal movement of mandibular molars and the difference in three-dimensional movement between mandibular molars and mandibular central incisors were analyzed. Results: The crown distalization efficiency of mandibular first and second molars in Group-B was 68.66% and 71.02%, respectively, which were higher than those in Group-A(p<0.05). The mandibular central incisors in Group-A showed labial displacement and a small amount of elongation, while those in Group-B showed less anchorage loss(p<0.05). In Group-A, the crown was tilted in the distal direction and moved in the buccal direction during mandibular molar distalization(p<0.05). While in Group-B, the crown was tilted in the distal directio (p<0.05) and the mandibular second molar was depressed(p<0.05). Conclusion: In the process of mandibular molar distalization assisted by micro-implant anchorage combined with a clear aligner, better protects the anchorage of the mandibular central incisor and improves the efficiency of the molar crown distalization.

3.
Small ; 19(26): e2208002, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942774

RESUMEN

Uranium extraction from natural seawater is one of the most promising routes to address the shortage of uranium resources. By combination of ligand complexation and photocatalytic reduction, porous framework-based photocatalysts have been widely applied to uranium enrichment. However, their practical applicability is limited by poor photocatalytic activity and low adsorption capacity. Herein, atomically dispersed Cu implanted UiO-66-NH2 (Cu SA@UiO-66-NH2 ) photocatalysts are prepared via ligand-assistant iced photocatalytic reduction route. N-Cu-N moiety acts as an effective electron acceptor to potentially facilitate charge transfer kinetics. By contrast, there exist Cu sub-nanometer clusters by the typical liquid phase photoreduction, resulting in a relatively low photocatalytic activity. Cu SA@UiO-66-NH2 adsorbents exhibit superior antibacterial ability and improved photoreduction conversion of the adsorbed U(VI) to insoluble U(IV), leading to a high uranium sorption capacity of 9.16 mg-U/g-Ads from natural seawater. This study provides new insight for enhancing uranium uptake by designing SA-mediated MOF photocatalysts.

4.
Small ; 16(3): e1905424, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31867877

RESUMEN

In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria-targeted zinc-doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep-seated tumors in a spatiotemporal fashion.


Asunto(s)
Magnetismo , Mitocondrias/metabolismo , Nanotecnología , Neoplasias/terapia , Línea Celular Tumoral , Linaje de la Célula , Humanos , Fenómenos Mecánicos , Neoplasias/patología
5.
Angew Chem Int Ed Engl ; 59(9): 3732-3738, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31834981

RESUMEN

Neutrophils can responsively release reactive oxygen species (ROS) to actively combat infections by exogenous stimulus and cascade enzyme catalyzed bio-oxidation. A supramolecular nanogel is now used as an artificial neutrophil by enzymatic interfacial self-assembly of peptides (Fmoc-Tyr(H2 PO3 )-OH) with magnetic nanoparticles (MNPs) and electrostatic loading of chloroperoxidase (CPO). The MNPs within the nanogel can elevate H2 O2 levels in cancer cells under programmed alternating magnetic field (AMF) similar to the neutrophil activator, and the loaded CPO within protective peptides nanolayer converts the H2 O2 into singlet oxygen (1 O2 ) in a sustained manner for neutrophil-inspired tumor therapy. As a proof of concept study, both the H2 O2 and 1 O2 in cancer cells increase stepwise under a programmed alternating magnetic field. An active enzyme dynamic therapy by magnetically stimulated oxygen stress and sustained enzyme bio-oxidation is thus shown with studies on both cells and animals.


Asunto(s)
Cloruro Peroxidasa/metabolismo , Nanopartículas de Magnetita/química , Nanogeles/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cloruro Peroxidasa/química , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Campos Magnéticos , Ratones , Nanogeles/uso terapéutico , Nanogeles/toxicidad , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Neutrófilos/química , Neutrófilos/inmunología , Tamaño de la Partícula , Péptidos/química , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Electricidad Estática , Tasa de Supervivencia , Trasplante Heterólogo
6.
Inorg Chem ; 58(9): 6276-6282, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990033

RESUMEN

Two new irregularity high-nuclearity clusters [Co26(TC4A)6(HL)4Cl4(HCOO)4(CH3O)2(OH)2(DMF)10(H2O)5] (+ solvent) (Co26) and [Ni28(TC4A)6(HL)6(PO4)2(µ3-O)2Cl2(CH3OH)14(H2O)2(DMF)8][(CH3NH2CH3)4] (+ solvent) (Ni28) have been solvothermally synthesized by p- tert-butylthiacalix[4]arene (H4TC4A), transition metals (CoCl2·6H2O/NiCl2·6H2O), and 1-hydroxy-2-(3-pyridinyl)ethylidene-1,1-diphosphonic acid (H5L). The clusters were structurally characterized by single crystal X-ray diffraction, PXRD, TGA, and FT-IR spectrum and Raman spectrum. Co26 features a rodlike Co26 core constructed by six Co4-TC4A secondary building units (SBUs) and four HL4- with two extra cobalt ions. Ni28 cluster represents a flowerlike Ni28 core built from six Ni4-TC4A SBUs, six HL4-, and four additional nickel ions. The multidentate risedronic acid displaying various new coordination mode bonds with SBUs to assemble two nanoclusters that enable high density possible coordinatively unsaturated metal sites (PCUMSs). Co26 and Ni28 clusters can be directly dispersed on carbon paper (CP) and showed extraordinary oxygen evolution reaction (OER) activity due to the larger exposed liable coordination active metal sites. The thermodecomposition of both nanoclusters at different temperatures afforded serial multicomponent complexes.

7.
Bioconjug Chem ; 29(8): 2855-2866, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30025449

RESUMEN

Developing a spatiotemporal-controlled platform with feasible synthesis and multifunctionality is highly desirable in the field of nanomedicine. Here, we present a near-infrared (NIR)-light-triggered approach to control the supramolecular assembly system for drug release and achieve synergistic chemo-photothermal therapy for cancer. A cucurbit[7]uril (CB[7]) stabilized gold nanostar (GNS) platform is designed to encapsulate the anticancer drug camptothecin (CPT) via host-guest chemistry. Importantly, CB[7] behaves not only as a surfactant to improve the stability of GNS in the aqueous solution but also as the cage for intermolecular assembly of CPT molecules. Moreover, without the competitive complexation, the drug release could be stimulated under NIR light irradiation. Synergistic treatment of cancer can be achieved by combining chemotherapy with the photothermal effect of GNS. This work develops a NIR-light-triggered cucurbituril-based drug-release approach that opens the door for remote control of drug release in the supramolecular assembly system.


Asunto(s)
Antineoplásicos/uso terapéutico , Hidrocarburos Aromáticos con Puentes/química , Camptotecina/uso terapéutico , Oro/química , Imidazoles/química , Rayos Infrarrojos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Camptotecina/química , Camptotecina/farmacocinética , Terapia Combinada , Humanos , Hipertermia Inducida/métodos , Imidazoles/uso terapéutico , Células MCF-7 , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Neoplasias/terapia , Espectrometría de Fluorescencia , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Opt Express ; 26(26): A984-A995, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30650866

RESUMEN

Herein, the low-cost and eco-friendly zinc cation (Zn2+) is used to replace part of the lead cation (Pb2+) in methylammonium lead iodide (CH3NH3PbI3). The modified perovskite material, CH3NH3PbxZn1-xI3, is then obtained and successfully applied in the construction of hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. The obtained PSCs with 1 mol% Zn doping dramatically facilitate the formation of dense, high surface coverage perovskite films with large grain size and superior crystallinity. Especially, the power conversion efficiency is up to 15.37%, which is a 14.8% increase, compared to the pristine PSCs. This work finds a superior way to further research lead-reduced PSCs.

9.
Heliyon ; 10(6): e28161, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545213

RESUMEN

Low-carbon travel assumes paramount significance in energy conservation and the establishment of an eco-friendly transportation ecosystem. This paper endeavors to explore the relationship between low-carbon travel intention, latent psychological variables, and sociodemographic attributes, drawing insights from responses of 602 residents in Hangzhou, China by structural equation model and multi-group model. In particular, we synthesize the theory of planned behavior, value-belief-norm theory, and view of incentive, a reflection of the public support for incentive policies. Results reveals that the primary determinants influencing the low-carbon travel intention encompass the view of incentive, attitude, and subjective norms. Individuals with diverse sociodemographic attributes manifest varying sensitivities, with males and elders exhibiting heightened responsiveness to incentive, while the presence of children decrease the attraction of incentive. These findings demonstrate that low-carbon travel intention can be increased by three ways, one is by the strong attraction of incentive especially tailor incentive policy, another is by making family-friendly policies to facilitate travel for groups with children, and the last is by improving the quality of low-carbon travel services thus increasing the attitude and other determinants.

10.
Nanomaterials (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38869581

RESUMEN

The recombination of charges and thermal excitation of carriers at the interface between methylammonium lead iodide perovskite (PVK) and the carbon electrode are crucial factors that affect the optoelectronic performance of carbon-based hole transport layer (HTL)-free perovskite photodetectors. In this work, a method was employed to introduce SnS quantum dots (QDs) on the back surface of perovskite, which passivated the defect states on the back surface of perovskite and addressed the energy-level mismatch issue between perovskite and carbon electrode. Performance testing of the QDs and the photodetector revealed that SnS QDs possess energy-level structures that are well matched with perovskite and have high absorption coefficients. The incorporation of these QDs into the interface layer effectively suppresses the dark current of the photodetector and greatly enhances the utilization of incident light. The experimental results demonstrate that the introduction of SnS QDs reduces the dark current by an order of magnitude compared to the pristine device at 0 V bias and increases the responsivity by 10%. The optimized photodetector exhibits a wide spectral response range (350 nm to 750 nm), high responsivity (0.32 A/W at 500 nm), and high specific detectivity (>1 × 1012 Jones).

11.
Funct Plant Biol ; 512024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38326230

RESUMEN

Phytohormones play a key role in regulating tiller number. Ascorbic acid (Asc)-phytohormone interaction plays a pivotal role in the regulation of senescence. We analysed the relationship between Asc and the enzyme concentrations and gene transcript abundances related to the signal perception of strigolactones (SLs), the contents of four phytohormones (abscisic acid, ABA; jasmonic acid, JA; indole acetic acid, IAA; cytokinin, CTK), the enzyme concentrations and gene transcript abundances related to the synthesis or transportation of these four phytohormones. Our results showed that Asc deficiency leads to the upregulation of enzyme concentrations, gene transcript abundances related to the SL signal perception, ABA synthesis and IAA transport. The altered level of Asc also leads to a change in the contents of ABA, JA, IAA and CTK. These findings support the conclusion that Asc or Asc/DHA play an important role in the signal perception and transduction of SLs, and Asc may affect the coordinated regulation of SL, IAA and CTK on rice (Oryza sativa ) tillering.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Oryza , Reguladores del Crecimiento de las Plantas , Ácido Ascórbico , Percepción
12.
Sci Prog ; 106(1): 368504221148842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36628421

RESUMEN

This article reviews recent studies applying machine learning (ML) approaches to biochar applications. We first briefly introduce the general biochar production process. Various aspects are contained, including the biochar application in the elimination of heavy metals and/or organic compounds and the biochar application in environmental and economic scopes, for instance, food security, energy, and carbon emission. The utilization of ML methods, including ANN, RF, and NN, plays a vital role in evaluating and predicting the efficiency of biochar absorption. It has been proved that ML methods can validly predict the adsorption effectiveness of biochar for water heavy metals with higher accuracy. Moreover, the literature proposed a comprehensive data-driven model to forecast biochar yield and compositions under various biomass input feedstock and different pyrolysis criteria. They said a 12.7% improvement in prediction accuracy compared to the existing literature. However, it might need further optimization in this direction. In summary, this review concludes increasing studies that a well-trained ML method can sufficiently reduce the number of experiment trials and working times associated with higher prediction accuracy. Moreover, further studies on ML applications are needed to optimize the trade-off between biochar yield and its composition.


Asunto(s)
Carbón Orgánico , Metales Pesados , Carbono , Aprendizaje Automático
13.
Discov Nano ; 18(1): 11, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780122

RESUMEN

Photodetectors (PDs) suffer from dark current due to defects in the perovskite photosensitive layer. Contact between the photosensitive layer and carbon electrodes could result in recombination of carriers at the interface. In this work, CsPbI3 quantum dots (QDs) were added between the photosensitive layer and the carbon electrode as the interfacial layer to passivate the surface defects of perovskite layer and improve the energy level matching at the interface. The effect of QDs concentrations on the passivation of the perovskite layer was investigated. It was found that the photoluminescence intensity of perovskite films was the strongest and the decay lifetime was the longest when the QDs concentration was 3 mg/mL. Owing to QDs passivation, the dark current of perovskite PD decreased by 94% from [Formula: see text] to [Formula: see text] A. The responsivity (R) at 605 nm improved by 27% from 0.29 to 0.37 A/W at 0 V bias voltage. The specific detectivity (D*) increased by 420% from [Formula: see text] to [Formula: see text] Jones.

14.
Open Life Sci ; 18(1): 20220790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027228

RESUMEN

Oxidative stress is closely linked to tumor initiation and development, conferring a survival advantage to cancer cells. Therefore, understanding cancer cells' antioxidant molecular mechanisms is crucial to cancer therapy. In this study, we discovered that H2O2-induced oxidative stress increased Nrf3 expression in colon cancer cells. Overexpression of Nrf3 decreased H2O2-mediated cytotoxicity and apoptosis. Furthermore, Nrf3 reduced reactive oxygen species levels and malondialdehyde concentrations after H2O2 treatment. Mechanistically, H2O2-mediated cell apoptosis involves multiple signaling proteins, including Akt, bcl-2, JNK, and p38. An increase in Nrf3 expression in colon cancer cells treated with H2O2 partly reversed Akt/Bcl-2 inhibition, whereas it decreased activation of p38 and JNK. In addition, we found that increasing Nrf3 decreased stress-associated chemical-induced cell death, resulting in drug resistance. According to these results, Nrf3 is critical for drug resistance and oxidant adaptation.

15.
Perioper Med (Lond) ; 12(1): 54, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872604

RESUMEN

BACKGROUND: The occurrence of postoperative complications within 30 days (PC1M) of a craniotomy for the removal of a primary malignant brain tumor has been associated with a poor prognosis. However, it is still unclear to early predict the occurrence of PC1M. This study aimed to identify the potential perioperative predictors of PC1M from its preoperative, intraoperative, and 24-h postoperative parameters. METHODS: Patients who had undergone craniotomy for primary malignant brain tumor (World Health Organization grades III and IV) from January 2011 to December 2020 were enrolled from a databank of Kaohsiung Veterans General Hospital, Taiwan. The patients were classified into PC1M and nonPC1M groups. PC1M was defined according to the classification by Landriel et al. as any deviation from an uneventful 30-day postoperative course. In both groups, data regarding the baseline characteristics and perioperative parameters of the patients, including a new marker-kinetic estimated glomerular filtration rate, were collected. Logistic regression was used to analyze the predictability of the perioperative parameters. RESULTS: The PC1M group included 41 of 95 patients. An American Society of Anesthesiologists score of > 2 (aOR, 3.17; 95% confidence interval [CI], 1.19-8.45; p = 0.021), longer anesthesia duration (aOR, 1.16; 95% CI, 0.69-0.88; p < 0.001), 24-h postoperative change in hematocrit by > - 4.8% (aOR, 3.45; 95% CI, 1.22-9.73; p = 0.0019), and 24-h postoperative change in kinetic estimated glomerular filtration rate of < 0 mL/min (aOR, 3.99; 95% CI, 1.52-10.53; p = 0.005) were identified as independent risk factors for PC1M via stepwise logistic regression analysis. When stratified according to the age of ≥ 65 years (OR, 11.55; 95% CI, 1.30-102.79; p = 0.028), the reduction of kinetic estimated glomerular filtration rate was more robustly associated with a higher risk of PC1M. CONCLUSIONS: Four parameters were demonstrated to significantly influence the risk of PC1M in patients undergoing primary malignant brain tumor removal. Measuring and verifying these markers, especially kinetic estimated glomerular filtration rate, would help early recognition of PC1M risk in clinical care.

16.
Oncol Lett ; 26(4): 443, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37720674

RESUMEN

Nuclear factor erythroid 2-related factor 3 (Nrf3) is increasingly implicated in multiple types of cancer; however, its function in triple-negative breast cancer (TNBC) remains unclear. This study aimed to examine the role of Nrf3 in TNBC. Compared with adjacent normal tissues, TNBC tissues expressed higher levels of Nrf3, and its expression was negatively correlated with survival time. Additionally, Nrf3 knockdown reduced the proliferation and migration of TNBC cells, whereas overexpression of Nrf3 had the opposite effects in vitro and in vivo. Moreover, functional enrichment of TNBC cells overexpressing Nrf3 allowed for the identification of numerous genes and pathways that were altered following Nrf3 overexpression. Further study showed that overexpression of Nrf3 activated the PI3K/AKT/mTOR signaling pathway and regulated the expression of proteins associated with epithelial-mesenchymal transition. Nrf3 was found to directly bind to p110α promoter regions, as evidenced by luciferase reporter and chromatin immunoprecipitation assays. Furthermore, PI3K inhibitors partially decreased the proliferation and migration of the Nrf3 overexpressing TNBC cells. In conclusion, Nrf3 enhances cellular proliferation and migration by activating PI3K/AKT/mTOR signaling pathways, highlighting a novel therapeutic target for TNBC.

17.
Chemosphere ; 307(Pt 1): 135654, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35863410

RESUMEN

Bilge water is a significant source of pollution in the marine environment and has captured widespread international attention. In this study, a sequencing batch reactor (SBR) combined with strain S2 identified as Bacillus licheniformis was employed to assess the biodegradation of Chemical Oxygen Demand (COD) from bilge water. The influencing variables such as temperature, pH level and inoculum concentration on the performance SBR system were optimized by utilizing response surface methodology (RSM). The experimental results showed that the maximum COD removal of 77.81% was reached at the optimal SBR operation conditions of temperature 35.44 °C pH 8.13, and inoculum concentration 31.47 mL. In the practical application of SBR, it was found that the decrease in hydraulic retention time (HRT) was accompanied by a decrease in COD degradation rate. The biodegradation kinetics of COD in bilge water were well fitted with the first-order equation with a higher R2 value of 0.98106. In conclusion, COD in bilge water can be efficiently biodegraded by SBR under the optimization of RSM.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Agua , Contaminantes Químicos del Agua/metabolismo
18.
PLoS One ; 17(2): e0263476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108344

RESUMEN

Car sharing has become a new mode of transport during the past two decades in the world. Its rapid growth in China has attracted a wide range of users and posed some problems. The main focus is on service efficiency and user satisfaction. To explore possible service enhancement and management intervention, this study aims at capturing the user characteristics according to different user types and scrutinizing their satisfaction with station-based one-way car sharing service. The study firstly illustrates descriptive statistics of user profile. This is followed by a study of user satisfaction influenced by user rates on staffs, the efficiency of rental process, vehicle situation, the use of credit card and their familiarity towards rental station. Furthermore, by clustering users according to the total travel time and distance during one rent, two different types of users are identified and defined as User Group A (UGA) and User Group B (UGB). To examine how fully do users utilize the shared cars, ANOVA was conducted implying family car ownership, total travel distance and main travel purpose have strong impact on total rental time for UGB, while for UGA, travel purpose and age have strong impact. Finally, ordinal logistic regression was introduced to find that for UGB, "shopping" is the main travel purpose with longer rental time, whereas for UGA, "out for business", "shopping", "visit friends" or "pick up others" are the main travel purposes with longer total travel time. Based on the findings, advices for operators on how to improve service quality and suggestions for government management strategy are discussed, respectively.


Asunto(s)
Automóviles/estadística & datos numéricos , Satisfacción Personal , Transportes/métodos , Viaje/estadística & datos numéricos , Adolescente , Adulto , China , Femenino , Humanos , Masculino , Adulto Joven
19.
J Agric Food Chem ; 70(39): 12663-12671, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36154002

RESUMEN

Selenium-enriched egg white peptides (Se-EWP) were prepared by pre-heat treatment and enzymatic hydrolysis in this study. In addition, their selenopeptide sequence identification and immunomodulatory effect were investigated. Results showed that the yield of Se-EWP obtained from alkaline-neutral protease treatment reached 76.90%, and peptides with a molecular weight of 200-1000 Da accounted for 98.33%. Four characteristic selenopeptides, including SeCys-Trp-Leu-Glu, Trp-Ser-SeCys, SeMet-Ala-Pro, and SeMet-Leu, were identified by HPLC-ESI-MS/MS, which were rich in hydrophobic and branched-chain amino acids. Se-EWP (750 mg/kg/d) could effectively retard the decrease of immune organ index in immunosuppressed mice induced by cyclophosphamide. Moreover, supplementation of Se-EWP could promote a higher content of Se in liver, the number of white blood cells, and the levels of serum cytokines (IL-6, IL-2, and TNF-α) as compared with EWP groups, indicating that Se-EWP could effectively alleviate immunosuppression induced by cyclophosphamide. These findings suggested that Se-EWP exhibited great potential as functional foods for immunomodulatory effect.


Asunto(s)
Selenio , Aminoácidos de Cadena Ramificada , Animales , Ciclofosfamida , Clara de Huevo/química , Interleucina-2/genética , Interleucina-6 , Ratones , Péptido Hidrolasas , Selenio/metabolismo , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/genética
20.
Nanoscale Res Lett ; 16(1): 74, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33928451

RESUMEN

In this work, inorganic tin-doped perovskite quantum dots (PQDs) are incorporated into carbon-based perovskite solar cells (PSCs) to improve their photovoltaic performance. On the one hand, by controlling the content of Sn2+ doping, the energy level of the tin-doped PQDs can be adjusted, to realize optimized band alignment and enhanced separation of photogenerated electron-hole pairs. On the other hand, the incorporation of tin-doped PQDs provided with a relatively high acceptor concentration due to the self-p-type doping effect is able to reduce the width of the depletion region near the back surface of the perovskite, thereby enhancing the hole extraction. Particularly, after the addition of CsSn0.2Pb0.8I3 quantum dots (QDs), improvement of the power conversion efficiency (PCE) from 12.80 to 14.22% can be obtained, in comparison with the pristine device. Moreover, the experimental results are analyzed through the simulation of the one-dimensional perovskite/tin-doped PQDs heterojunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA