Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865262

RESUMEN

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Asunto(s)
Apicoplastos , Ácido Pirúvico , Toxoplasma , Apicoplastos/metabolismo , Toxoplasma/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Animales , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Transporte Biológico , Redes y Vías Metabólicas
2.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935808

RESUMEN

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Proteína Fosfatasa 1 , Gránulos de Estrés , Proteínas no Estructurales Virales , Replicación Viral , Infección por el Virus Zika , Virus Zika , Virus Zika/fisiología , Replicación Viral/fisiología , Humanos , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteína Fosfatasa 1/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Gránulos de Estrés/metabolismo , Animales
3.
J Biol Chem ; : 107896, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39424140

RESUMEN

Fusobacterium nucleatum is an oral commensal bacterium that can act as an opportunistic pathogen, and is implicated in diseases such as periodontitis, adverse pregnancy outcomes, colorectal cancer, and Alzheimer's disease. F. nucleatum synthesizes lanthionine for its peptidoglycan, rather than meso-2,6-diaminopimelic acid (DAP) used by most Gram-negative bacteria. Despite lacking the biosynthetic pathway for DAP, the genome of F. nucleatum ATCC 25586 encodes a predicted DAP epimerase. A recent study hypothesized that this enzyme may act as a lanthionine epimerase, but the authors found a very low turnover rate, suggesting that this enzyme likely has another more favored substrate. Here, we characterize this enzyme as a histidine racemase (HisR), and found that catalytic turnover is ∼10,000× faster with L-histidine than with L,L-lanthionine. Kinetic experiments suggest that HisR functions as a cofactor-independent racemase and that turnover is specific for histidine, while crystal structures of catalytic cysteine to serine mutants (C67S or C209S) reveal this enzyme in its substrate-unbound, open conformation. Currently, the only other reported cofactor-independent histidine racemase is CntK from Staphylococcus aureus, which is used in the biosynthesis of staphylopine, a broad-spectrum metallophore that increases virulence of S. aureus. However, CntK shares only 28% sequence identity with HisR, and their genes exist in different genomic contexts. Knock-out of hisR in F. nucleatum results in a small but reproducible lag in growth compared to wild-type during exponential phase, suggesting that HisR may play a role in growth of this periodontal pathogen.

4.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795180

RESUMEN

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Asunto(s)
Resistencia a Antineoplásicos , Indoles , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Sulfonamidas , Neoplasias de la Tiroides , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Humanos , Animales , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Indoles/farmacología , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sulfonamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Sorafenib/farmacología , Quinolinas/farmacología , Mutación , Antígenos/metabolismo , Proteoglicanos/metabolismo , Proteínas de la Membrana , Proteoglicanos Tipo Condroitín Sulfato
5.
Cancer ; 130(10): 1884-1893, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236717

RESUMEN

BACKGROUND: The presence of circulating plasma cells (CPCs) is an important laboratory indicator for the diagnosis, staging, risk stratification, and progression monitoring of multiple myeloma (MM). Early detection of CPCs in the peripheral blood (PB) followed by timely interventions can significantly improve MM prognosis and delay its progression. Although the conventional cell morphology examination remains the predominant method for CPC detection because of accessibility, its sensitivity and reproducibility are limited by technician expertise and cell quantity constraints. This study aims to develop an artificial intelligence (AI)-based automated system for a more sensitive and efficient CPC morphology detection. METHODS: A total of 137 bone marrow smears and 72 PB smears from patients with at Zhongshan Hospital, Fudan University, were retrospectively reviewed. Using an AI-powered digital pathology platform, Morphogo, 305,019 cell images were collected for training. Morphogo's efficacy in CPC detection was evaluated with additional 184 PB smears (94 from patients with MM and 90 from those with other hematological malignancies) and compared with manual microscopy. RESULTS: Morphogo achieved 99.64% accuracy, 89.03% sensitivity, and 99.68% specificity in classifying CPCs. At a 0.60 threshold, Morphogo achieved a sensitivity of 96.15%, which was approximately twice that of manual microscopy, with a specificity of 78.03%. Patients with CPCs detected by AI scanning had a significantly shorter median progression-free survival compared with those without CPC detection (18 months vs. 34 months, p< .01). CONCLUSIONS: Morphogo is a highly sensitive system for the automated detection of CPCs, with potential applications in initial screening, prognosis prediction, and posttreatment monitoring for MM patients. PLAIN LANGUAGE SUMMARY: Diagnosing and monitoring multiple myeloma (MM), a type of blood cancer, requires identifying and quantifying specific cells called circulating plasma cells (CPCs) in the blood. The conventional method for detecting CPCs is manual microscopic examination, which is time-consuming and lacks sensitivity. This study introduces a highly sensitive CPC detection method using an artificial intelligence-based system, Morphogo. It demonstrated remarkable sensitivity and accuracy, surpassing conventional microscopy. This advanced approach suggests that early and accurate CPC detection is achievable by morphology examination, making efficient CPC screening more accessible for patients with MM. This innovative system has the potential to be used in the diagnosis and risk assessment of MM.


Asunto(s)
Aprendizaje Profundo , Mieloma Múltiple , Células Plasmáticas , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/sangre , Mieloma Múltiple/diagnóstico , Células Plasmáticas/patología , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Células Neoplásicas Circulantes/patología , Pronóstico , Adulto
6.
Anal Chem ; 96(16): 6321-6328, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38595097

RESUMEN

Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Luz , Nanopartículas/química , Dispersión de Radiación , Microambiente Celular , Tamaño de la Partícula , Difusión , Microambiente Tumoral , Línea Celular Tumoral , Movimiento (Física)
7.
Anal Chem ; 96(44): 17567-17575, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39439116

RESUMEN

Conventional methods for detecting single nucleotide polymorphisms (SNPs) in clinical practice often require substantial time, labor, and specialized equipment, limiting their widespread application. To address this limitation, we refined our previous SNP detection method, IMAS-RPA [introducing an extra mismatched base adjacent to the single-base mutant site by recombinase polymerase amplification (RPA)], resulting in an updated version termed IMAS-RPAv2. We began by introducing a suboptimal protospacer adjacent motif (PAM) sequence, GTTG, into the double-stranded DNA (dsDNA) products using either RPA or reverse transcription RPA. This modification decreased the efficiency with which CRISPR RNA (crRNA) recognizes the PAM and locally unwinds the dsDNA to form an R loop. After a delay, the R loop forms. However, due to the intentional incorporation of a mismatched base on the crRNA relative to the wild-type double-stranded DNA (WT-dsDNA), a continuous two-base mismatch is established between the crRNA and WT-dsDNA. Consequently, WT-dsDNA does not activate CRISPR/Cas12a's cleavage activity within a short time, while variant-type dsDNA continues to activate CRISPR/Cas12a and produce a robust fluorescence signal. This improvement significantly enhances the SNP discrimination sensitivity, allowing for detection at the single-copy level. Results were observed using both a conventional microplate reader and a specially designed portable device created through 3D printing. This device allows a direct fluorescence observation without the need for additional equipment. Consequently, the entire detection process becomes independent of large-scale equipment. This greatly expands its range of applications and offers promising prospects for clinical use.


Asunto(s)
Sistemas CRISPR-Cas , Polimorfismo de Nucleótido Simple , Sistemas CRISPR-Cas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Recombinasas/metabolismo , ADN/genética , ADN/química , Proteínas Bacterianas , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
8.
Small ; : e2404605, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248680

RESUMEN

Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m-2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.

9.
J Autoimmun ; 144: 103176, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364575

RESUMEN

Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Psoriasis , Humanos , Linfocitos T , Sistema Hipófiso-Suprarrenal , Psoriasis/epidemiología , Citocinas
10.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532312

RESUMEN

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patología , Neoplasias Encefálicas/genética , Transformación Celular Neoplásica/genética , Oncogenes , Biomarcadores , Proliferación Celular , Proteína Elk-1 con Dominio ets/genética , ADN Helicasas/genética
11.
J Magn Reson Imaging ; 59(5): 1593-1602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37610209

RESUMEN

BACKGROUND: Identification of non-diabetic renal disease (NDRD) in patients with type 2 diabetes mellitus (T2DM) may help tailor treatment. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is a promising tool to evaluate renal function but its potential role in the clinical differentiation between diabetic nephropathy (DN) and NDRD remains unclear. PURPOSE: To investigate the added role of IVIM-DWI in the differential diagnosis between DN and NDRD in patients with T2DM. STUDY TYPE: Prospective. POPULATION: Sixty-three patients with T2DM (ages: 22-69 years, 17 females) confirmed by renal biopsy divided into two subgroups (28 DN and 35 NDRD). FIELD STRENGTH/SEQUENCE: 3 T/ T2 weighted imaging (T2WI), and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). ASSESSMENT: The parameters derived from IVIM-DWI (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion fraction [f]) were calculated for the cortex and medulla, respectively. The clinical indexes related to renal function (eg cystatin C, etc.) and diabetes (eg diabetic retinopathy [DR], fasting blood glucose, etc.) were measured and calculated within 1 week before MRI scanning. The clinical model based on clinical indexes and the IVIM-based model based on IVIM parameters and clinical indexes were established and evaluated, respectively. STATISTICAL TESTS: Student's t-test; Mann-Whitney U test; Fisher's exact test; Chi-squared test; Intraclass correlation coefficient; Receiver operating characteristic analysis; Hosmer-Lemeshow test; DeLong's test. P < 0.05 was considered statistically significant. RESULTS: The cortex D*, DR, and cystatin C values were identified as independent predictors of NDRD in multivariable analysis. The IVIM-based model, comprising DR, cystatin C, and cortex D*, significantly outperformed the clinical model containing only DR, and cystatin C (AUC = 0.934, 0.845, respectively). DATA CONCLUSION: The IVIM parameters, especially the renal cortex D* value, might serve as novel indicators in the differential diagnosis between DN and NDRD in patients with T2DM. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Nefropatías Diabéticas/diagnóstico por imagen , Cistatina C , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Movimiento (Física)
12.
Horm Metab Res ; 56(5): 368-372, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447949

RESUMEN

The aim of the study was to investigate the iodine intake in the resident population in Xi'an and analyze the relationship between iodine nutritional status and the prevalence of subclinical hypothyroidism and thyroid nodules (TNs). A total of 2507 people were enrolled in Xi'an. Venous serum thyroid stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb), urinary iodine concentration (UIC), and thyroid ultrasonography were collected. Patients with abnormal TSH were checked for free thyroxine (FT4) and triiodothyronine (FT3). Adults in Xi'an had median UICs of 220.80 µg/L and 178.56 µg/l, respectively. A sum of 16.78% of people had subclinical hypothyroidism. Both iodine excess and iodine deficit increased the frequency of subclinical hypothyroidism. The lowest was around 15.09% in females with urine iodine levels between 200 and 299 µg/l. With a rate of 10.69%, the lowest prevalence range for males was 100-199 µg/l. In Xi'an, 11.37% of people have TNs. In comparison to other UIC categories, TN occurrences were higher in females (18.5%) and males (12%) when UIC were below 100 µg/l. In conclusion, iodine intake was sufficient in the Xi'an area, while the adults' UIC remains slightly higher than the criteria. Iodine excess or deficiency can lead to an increase in the prevalence of subclinical hypothyroidism. Patients with iodine deficiency are more likely to develop TNs.


Asunto(s)
Hipotiroidismo , Yodo , Nódulo Tiroideo , Humanos , Yodo/orina , Yodo/sangre , Femenino , Masculino , Nódulo Tiroideo/epidemiología , Nódulo Tiroideo/orina , Nódulo Tiroideo/sangre , Hipotiroidismo/epidemiología , Hipotiroidismo/orina , Hipotiroidismo/sangre , Prevalencia , Adulto , Persona de Mediana Edad , Anciano
13.
Pharmacol Res ; 202: 107113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387744

RESUMEN

Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.


Asunto(s)
Antiinflamatorios , Sepsis , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Eicosanoides , Mediadores de Inflamación , Sepsis/tratamiento farmacológico , Sepsis/complicaciones
14.
Nanotechnology ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362238

RESUMEN

Two-dimensional material (2D material) MXene has great application potential in gas sensors because of its excellent controllable performance and vast specific surface area. In this study, we used a straightforward in-situ electrostatic self-assembly technique to create Fe(OH)3/Ti3C2Tx nanocomposites, which were then used to fabricate gas sensors for ammonia detection at room temperature (25 ℃). Several characterization methods were performed aimed at determining the surface appearance and construction of the nanocomposites, and the sensing characteristics and mechanism were also systematically examined. The findings demonstrate the effective incorporation of amorphous Fe(OH)3 nanoparticles on the surface of Ti3C2Tx. Additionally the nanocomposites of Fe(OH)3/Ti3C2Tx have considerably higher specific surface area than pure Ti3C2Tx, hence offering more active NH3 adsorption sites. The response of the sensor to 100 ppm NH3 was 48.6% at room temperature, which was 9.3 times more higher than that of pure Ti3C2Tx. The sensors also have the advantages of long-term stability (33 days), low NH3 detection limit (500 ppb), and rapid recovery time (85 s) and response times (78 s). It is anticipated that this work will be helpful for developing the new generation of wearable ammonia sensors at room temperature.

15.
Bioorg Med Chem ; 110: 117825, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954918

RESUMEN

To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.


Asunto(s)
ARN Interferente Pequeño , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Humanos , Estructura Molecular , Interferencia de ARN
16.
Nucleic Acids Res ; 50(16): 9470-9489, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947700

RESUMEN

The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.


Asunto(s)
Virus de la Hepatitis A , Picornaviridae , Proteínas no Estructurales Virales/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Replicación Viral/genética , ARN , Picornaviridae/genética , Adenosina Trifosfatasas/genética , Ribonucleasas , ARN Viral/genética , ARN Viral/metabolismo
17.
Biodegradation ; 35(5): 565-582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844743

RESUMEN

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).


Asunto(s)
Procesos Autotróficos , Reactores Biológicos , Desnitrificación , Oxidación-Reducción , Reactores Biológicos/microbiología , Azufre/metabolismo , Aguas del Alcantarillado/microbiología , Nitratos/metabolismo , Anaerobiosis , Bacterias/metabolismo , Nitritos/metabolismo , Compuestos de Amonio/metabolismo , Eliminación de Residuos Líquidos/métodos
18.
Luminescence ; 39(1): e4600, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37752625

RESUMEN

Hypochlorite (ClO- ), as a kind of essential reactive oxygen species, plays a crucial role in vitro and in vivo. Here, a ratiometric fluorescent probe (TPAM) was designed and constructed for sensing ClO- based on substituted triphenylamine and malononitrile, which exhibited obvious colour transfer from orange to colourless under daylight accompanied by noticeable fluorescence change from red to green in response to ClO- . TPAM could effectively monitor ClO- with the merits of fast response, excellent selectivity, high sensitivity and a low detection limit of 0.1014 µM. 1 H NMR, mass spectra and theoretical calculations proved that ClO- caused the oxidation of the carbon-carbon double bond in TPAM, resulting in compound 1 and marked changes in colour and fluorescence. In addition, TPAM was utilized for imaging ClO- in living cells successfully with good photostability and biocompatibility.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Imagen Óptica , Carbono
19.
Angew Chem Int Ed Engl ; 63(15): e202400459, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38317310

RESUMEN

We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.


Asunto(s)
Ferroptosis , Metionina , Fluorescencia , Racemetionina , Diagnóstico por Imagen , Microambiente Tumoral
20.
Angew Chem Int Ed Engl ; 63(31): e202402880, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758629

RESUMEN

Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.


Asunto(s)
Hidroxilamina , Lisina , Lisina/química , Hidroxilamina/química , Proteínas/química , Amidinas/química , alfa-Sinucleína/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA