Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375297

RESUMEN

Androgen receptor (AR) is a viable therapeutic target for lethal castration-resistant prostate cancer (CRPC), because the continued progression of CRPC is mainly driven by the reactivation of AR transcriptional activity. The current FDA-approved AR antagonists binding to ligand binding domain (LBD) become ineffective in CRPC with AR gene amplification, LBD mutation, and the evolution of LBD-truncated AR splice variants. Encouraged by the fact that tricyclic aromatic diterpenoid QW07 has recently been established as a potential N-terminal AR antagonist, this study aims to explore the structure-activity relationship of tricyclic diterpenoids and their potential to suppress AR-positive cell proliferation. Dehydroabietylamine, abietic acid, dehydroabietic acid, and their derivatives were selected, since they have a similar core structure as QW07. Twenty diterpenoids were prepared for the evaluation of their antiproliferative potency on AR-positive prostate cancer cell models (LNCaP and 22Rv1) using AR-null cell models (PC-3 and DU145) as comparisons. Our data indicated that six tricyclic diterpenoids possess greater potency than enzalutamide (FDA-approved AR antagonist) towards LNCaP and 22Rv1 AR-positive cells, and four diterpenoids are more potent than enzalutamide against 22Rv1 AR-positive cells. The optimal derivative possesses greater potency (IC50 = 0.27 µM) and selectivity than QW07 towards AR-positive 22Rv1 cells.


Asunto(s)
Diterpenos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Línea Celular Tumoral , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Diterpenos/farmacología , Diterpenos/uso terapéutico
2.
Bioorg Med Chem Lett ; 61: 128608, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143982

RESUMEN

Herein, we present a class of potent triplex DNA binding ligands derived from the natural product quercetin, which is the first of its kind that has ever been reported in the literature. The binding of 5-substituted quercetin derivatives (3, 3', 4', 7-tetramethoxyflavonoids) to triplex and duplex DNA was investigated using several biophysical tools, including thermal denaturation monitored by UV, circular dichroism, differential scanning calorimetry, and isothermal titration calorimetry. Experimental data reveal that several 5-substituted 3, 3', 4', 7-tetramethoxyflavonoids have remarkable effects on binding to DNA triple helices, and they do not influence the double-helical DNA structures. A few derivatives such as compounds 5 and 7 have comparable (if not better) binding affinities to neomycin, a well-known DNA triplex binding ligand, under the same conditions. The amino-containing side chains at the 5-position of 3, 3', 4', 7-tetramethoxyflavonoids are crucial for the observed binding affinity and specificity.


Asunto(s)
Productos Biológicos/química , ADN/química , Sitios de Unión , Ligandos , Estructura Molecular
3.
Bioorg Med Chem Lett ; 72: 128870, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35772635

RESUMEN

Roughly 268,000 new cases of prostate cancer and 34,000 deaths from prostate cancer are projected by the American Cancer Society to occur in the United States in 2022. Androgen receptor is a key protein in the proliferation and survival of prostate cancer cells and has been revealed to be overexpressed in 30% to 50% of castration-resistant prostate cancer patients. One promising approach to reducing the level of this protein is Proteolysis Targeting Chimeras (PROTACs) that is an emerging drug discovery technology. PROTACs are hetero-bifunctional molecules where one end binds to a protein of interest and the other to an E3 ligase ligand, initiating the Ubiquitin-Proteasome Pathway for protein degradation. Two PROTACs with niclosamide as androgen receptor ligand and VHL-032 as the E3 ligase ligand have been designed and synthesized for suppressing proliferation of androgen receptor-positive prostate cancer cells via degrading androgen receptor. The in vitro antiproliferative assessment suggested that they can selectively suppress PC-3, LNCaP, and 22Rv1 prostate cancer cell proliferation, but cannot inhibit DU145 cell proliferation. However, the mechanism of both compounds in suppressing prostate cancer cell proliferation is not through the AR PROTAC mechanism because they did not degrade AR in our Western Blotting assay up to 1 µM.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Ligandos , Niclosamida/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Bioorg Med Chem Lett ; 40: 127970, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753258

RESUMEN

(-)-Zampanolide is a unique microtubule stabilizing agent (MSA) with covalent-binding mechanism and low nanomolar anitproliferative potency towards multi-drug resistant cancer cells. MSAs have a special connection with prostate cancer by inhibiting androgen receptor nuclear translocation. Zampanolide and the structurally related dactylolide have thus been sought after by us as lead compounds for development of anti-prostate cancer agents. DesTHPdactylolide is a simplified mimic of dactylolide and has previously been synthesized by us in both configurations, with the (17R) configuration being more potent in suppressing prostate cancer cell proliferation. The current study aims to synthesize an amide mimic of (17R) desTHPdactylolide that was anticipated to be metabolically more stable than (17R) desTHPdactylolide. To this end, the amide mimic has been successfully synthesized through a 26-step transformation from 2-butyn-1-ol. Our WST-1 cell proliferation assay in five human prostate cancer cell models indicated that the lactam moiety can serve as a bioisostere for the lactone in desTHPdactylolide.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Lactamas/farmacología , Antineoplásicos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lactamas/síntesis química , Lactonas/química
5.
Molecules ; 26(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34770829

RESUMEN

To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Células Tumorales Cultivadas
6.
Phys Chem Chem Phys ; 22(16): 8476-8484, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32285081

RESUMEN

The possibility of using coinage metal atoms as excess electron acceptors is examined for the first time by designing a new class of M+-1-M'- (M = Li, Na, and K; M' = Cu, Ag, and Au) compounds termed "coinage metalides" on the basis of an intriguing Janus-type all-cis1,2,3,4,5,6-hexafluorocyclohexane (1) molecule. Under the large facial polarization of 1, the outermost ns1 electrons of alkali metal atoms can be transferred to coinage metal atoms, forming diffuse excess electrons around them. Consequently, the resulting M+-1-Cu- and M+-1-Ag- compounds exhibit significantly large nonlinear optical (NLO) responses. In particular, these novel M+-1-M'- compounds exhibit much higher stability (larger VIEs and Ec values) than that of the corresponding M+·1·M'- (M, M' = Li, Na, and K) alkalides. We hope this work could open up new possibilities for NLO material design by using coinage metal atoms as excess electron acceptors and, on the other hand, attract more experimental interest and efforts to synthesize such stable compounds in the laboratory.

7.
Int J Mol Sci ; 21(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806551

RESUMEN

Curcumin has been well studied for its anti-oxidant, anti-inflammatory, and anti-cancer action. Its potential as a therapy is limited due to its low bioavailability and rapid metabolism. To overcome these challenges, investigators are developing curcumin analogs, nanoparticle formulations, and combining curcumin with other compounds or dietary components. In the present study, we used a 1-chromonyl-5-imidazolylpentadienone named KY-20-22 that contains both the pharmacophore of curcumin and 1,4 benzopyrone (chromone) moiety typical for flavonoids, and also included specific moieties to enhance the bioavailability. When we tested the in vitro effect of KY-20-22 in triple-negative breast cancer (TNBC) cell lines, we found that it decreased the cell survival and colony formation of MDA-MB-231 and MDA-MB-468 cells. An increase in mitochondrial reactive oxygen species was also observed in TNBC cells exposed to KY-20-22. Furthermore, KY-20-22 decreased epithelial-mesenchymal formation (EMT) as evidenced by the modulation of the EMT markers E-cadherin and N-cadherin. Based on the fact that KY-20-22 regulates interleukin-6, a cytokine involved in chemotherapy resistance, we combined it with paclitaxel and found that it synergistically induced anti-proliferative action in TNBC cells. The results from this study suggested that 1-chromonyl-5-imidazolylpentadienone KY-20-22 exhibited anti-cancer action in MDA-MB-231 and MDA-MB-468 cells. Future studies are required to evaluate the anti-cancer ability and bioavailability of KY-20-22 in the TNBC animal model.


Asunto(s)
Antineoplásicos/uso terapéutico , Cromonas/uso terapéutico , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sinergismo Farmacológico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Paclitaxel/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/genética
8.
Molecules ; 25(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952332

RESUMEN

Zampanolide is a promising microtubule-stabilizing agent (MSA) with a unique chemical structure. It is superior to the current clinically used MSAs due to the covalent nature of its binding to ß-tubulin and high cytotoxic potency toward multidrug-resistant cancer cells. However, its further development as a viable drug candidate is hindered by its limited availability. More importantly, conversion of its chemically fragile side chain into a stabilized bioisostere is envisioned to enable zampanolide to possess more drug-like properties. As part of our ongoing project aiming to develop its mimics with a stable side chain using straightforward synthetic approaches, 2-fluorobenzyl alcohol was designed as a bioisosteric surrogate for the side chain based on its binding conformation as confirmed by the X-ray structure of tubulin complexed with zampanolide. Two new zampanolide mimics with the newly designed side chain have been successfully synthesized through a 25-step chemical transformation for each. Yamaguchi esterification and intramolecular Horner-Wadsworth-Emmons condensation were used as key reactions to construct the lactone core. The chiral centers at C17 and C18 were introduced by the Sharpless asymmetric dihydroxylation. Our WST-1 cell proliferation assay data in both docetaxel-resistant and docetaxel-naive prostate cancer cell lines revealed that compound 6 is the optimal mimic and the newly designed side chain can serve as a bioisostere for the chemically fragile N-acetyl hemiaminal side chain in zampanolide.


Asunto(s)
Antineoplásicos/farmacología , Biomimética , Proliferación Celular , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Macrólidos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Docetaxel/farmacología , Humanos , Masculino , Células Tumorales Cultivadas
9.
Molecules ; 25(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456317

RESUMEN

Enzalutamide is the first second-generation nonsteroidal androgen receptor (AR) antagonist with a strong binding affinity to AR. Most significantly, enzalutamide can prolong not only overall survival time and metastatic free survival time for patients with lethal castration-resistant prostate cancer (CRPC), but also castration-resistant free survival time for patients with castration-sensitive prostate cancer (CSPC). Enzalutamide has thus been approved by the US Food and Drug Administration (FDA) for the treatment of both metastatic (in 2012) and non-metastatic (in 2018) CRPC, as well as CSPC (2019). This is an inspiring drug discovery story created by an amazing interdisciplinary collaboration. Equally important, the successful clinical use of enzalutamide proves the notion that the second-generation AR antagonists can serve as hormonal therapeutics for three forms of advanced prostate cancer. This has been further verified by the recent FDA approval of the other two second-generation AR antagonists, apalutamide and darolutamide, for the treatment of prostate cancer. This review focuses on the rational design and discovery of these three second-generation AR antagonists, and then highlights their syntheses, clinical studies, and use. Strategies to overcome the resistance to the second-generation AR antagonists are also reviewed.


Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/genética , Benzamidas , Resistencia a Antineoplásicos/genética , Humanos , Masculino , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Pirazoles , Transducción de Señal/efectos de los fármacos , Tiohidantoínas/uso terapéutico
10.
Org Biomol Chem ; 17(15): 3830-3844, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30924817

RESUMEN

(-)-Zampanolide is a marine microtubule-stabilizing macrolide that has been shown by in vitro experiments to be a promising anticancer lead compound. Through its unique covalent-binding with ß-tubulin, zampanolide exhibits cytotoxic potency towards multi-drug resistant cancer cells that is superior to paclitaxel. However, the limited availability of zampanolide impedes its further in vivo evaluation as a viable drug candidate. Zampanolide is envisioned to become more drug-like if its chemically fragile side chain can be stabilized; hence, this project aims to develop mimics of zampanolide with a stable side chain using straightforward synthetic methods. To this end, twelve novel zampanolide mimics (51-62) with conjugated and planar side chains have been synthesized via a 24-step sequence for each mimic from commercially available 2-butyn-1-ol as starting material. A Horner-Wadsworth-Emmons reaction incorporates the α,ß-unsaturated ketone side chain and also closes the core macrocycle. WST-1 cell proliferation assays in three docetaxel-sensitive and two docetaxel-resistant human prostate cancer cell models confirm that a suitably designed side chain can serve as a bioisostere for the N-acyl hemiaminal side chain in zampanolide. Mimic 52 with a 17R chiral center was identified as the optimal candidate with IC50 values of 0.29-0.46 µM against both docetaxel-sensitive (PC-3 and DU145) and docetaxel-resistant prostate cancer cell lines (PC-3/DTX and DU145/DTX). Zampanolide mimic 52 exhibited equivalent antiproliferative potency towards both docetaxel-sensitive and docetaxel-resistant cell lines, with relative resistance in the range of 0.9-1.6.


Asunto(s)
Antineoplásicos/farmacología , Macrólidos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Macrólidos/síntesis química , Macrólidos/química , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
11.
Bioorg Chem ; 87: 227-239, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904813

RESUMEN

Forty-eight nitrogen-containing quercetin derivatives were synthesized from readily available rutin or quercetin for the in vitro evaluation of their biological profiles. The WST-1 cell proliferation assay data indicate that thirty-nine out of the forty-eight derivatives possess significantly improved antiproliferative potency as compared with quercetin and fisetin, as well as the parent 3,3',4',7-O-tetramethylquercetin toward both androgen-sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) human prostate cancer cell lines. 5-O-Aminoalkyl-3,3',4',7-O-tetramethylquercetins were established as a better scaffold for further development as anti-prostate cancer agents. Among them, 5-O-(N,N-dibutylamino)propyl-3,3',4',7-O-tetramethylquercetin (44) was identified as the optimal derivative with IC50 values of 0.55-2.82 µM, being over 35-182 times more potent than quercetin. The flow cytometry-based assays further demonstrate that 44 effectively activates PC-3 cell apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Nitrógeno/farmacología , Quercetina/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Docetaxel/química , Docetaxel/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Nitrógeno/química , Células PC-3 , Quercetina/síntesis química , Quercetina/química , Quercetina/farmacología , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Bioorg Med Chem ; 26(16): 4751-4760, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30121214

RESUMEN

Our earlier studies indicate that (1E,4E)-1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones and (1E,4E)-1,5-bis(1-alkyl-1H-benzo[d]imidazol-2-yl)penta-1,4-diene-3-ones exhibit up to 121-fold greater antiproliferative potency than curcumin in human prostate cancer cell models, but only 2-10 fold increase in mouse plasma concentrations. The present study aims to further optimize them as anti-prostate cancer agents with both good potency and bioavailability. (1E,4E)-1,5-Bis(1H-imidazol-2-yl)penta-1,4-diene-3-one, the potential metabolic product of (1E,4E)-1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones, was synthesized and evaluated for its anti-proliferative activity. The promising potency of 1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones was completely abolished by removing the 1-alkyl group, suggesting the critical role of an appropriate group on the N1 position. We then envisioned that N-aryl substitution to exclude the C-H bond on the carbon adjacent to the N1 position (α-H) may increase the metabolic stability. Consequently, seven (1E,4E)-1,5-bis(1-aryl-1H-imidazol-2-yl)penta-1,4-dien-3-ones and three (1E,4E)-1,5-bis(1-aryl-1H-benzo[d]imidazol-2-yl)penta-1,4-dien-3-ones, as well as three (1E,4E)-1,5-bis(1-aryl-1H-pyrrolo[3,2-b]pyridine-2-yl)penta-1,4-dien-3-ones, were synthesized through a three-step transformation, including N-arylation via Ullmann condensation, formylation, and Horner-Wadsworth-Emmons reaction. Six optimal (1E,4E)-1,5-bis(1-aryl-1H-imidazol-2-yl)penta-1,4-dien-3-ones exhibit 24- to 375-fold improved potency as compared with curcumin. Replacement of the imidazole with bulkier benzoimidazole and 4-azaindole results in a substantial decrease in the potency. (1E,4E)-1,5-Bis(1-(2-methoxyphenyl)-1H-imidazol-2-yl)penta-1,4-dien-3-one (17d) was established as an optimal compound with both superior potency and good bioavailability that is sufficient to provide the therapeutic efficacy necessary to suppress in vivo tumor growth.


Asunto(s)
Alcadienos/química , Antineoplásicos/química , Curcumina/química , Alcadienos/farmacocinética , Alcadienos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Curcumina/farmacocinética , Curcumina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Semivida , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad
13.
Bioorg Med Chem ; 26(12): 3514-3520, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29784275

RESUMEN

Dactylolide and certain analogues are attractive targets for study due to their structural resemblance to zampanolide, a very promising anticancer lead compound and a unique covalent-binding microtubule stabilizing agent. The primary goal of this project is identification and synthesis of simplified analogues of dactylolide that would be easier to prepare and could be investigated for antiproliferative activity in comparison with zampanolide. Extension of Almann's concept of a simplified zampanolide analogue to dactylolide in the form of desTHPdactylolide was attractive not only for reasons of synthetic simplification but also for the prospect that analogues of dactylolide could be prepared in both (17S) and (17R) configurations. Since Altmann's overall yield for the six-step procedure leading to the C9-C18 fragment of desTHPdactylolide was only 8.7%, a study focused on optimized synthesis and antiproliferative evaluation of each enantiomer of desTHPdactylolide was initiated using Altmann's route as a framework. To this end, two optimized approaches to this fragment C9-C18 were successfully developed by us using allyl iodide or allyl tosylate as the starting material for a critical Williamson ether synthesis. Both (17S) and (17R) desTHPdactylolides were readily synthesized in our laboratory using optimized methods in yields of 37-43%. Antiproliferative activity of the pair of enantiomeric desTHPdactylolides, together with their analogues, was evaluated in three docetaxel-sensitive and two docetaxel-resistant prostate cancer cell models using a WST-1 cell proliferation assay. Surprisingly, (17R) desTHPdactylolide was identified as the eutomer in the prostate cancer cell models. It was found that (17S) and (17R) desTHPdactylolide exhibit equivalent antiproliferative potency towards both docetaxel-sensitive (PC-3 and DU145) and docetaxel-resistant prostate cancer cell lines (PC-3/DTX and DU145/DTX).


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Lactonas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Docetaxel , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Lactonas/síntesis química , Lactonas/farmacología , Estereoisomerismo , Taxoides/farmacología
14.
Pestic Biochem Physiol ; 151: 32-39, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30524149

RESUMEN

The widespread emergence of pyrethroid-resistant Anopheles gambiae has intensified the need to find new contact mosquitocides for indoor residual spraying and insecticide treated nets. With the goal of developing new species-selective and resistance-breaking acetylcholinesterase (AChE)-inhibiting mosquitocides, in this report we revisit the effects of carbamate substitution on aryl carbamates, and variation of the 1-alkyl group on pyrazol-4-yl methylcarbamates. Compared to aryl methylcarbamates, aryl dimethylcarbamates were found to have lower selectivity for An. gambiae AChE (AgAChE) over human AChE (hAChE), but improved tarsal contact toxicity to G3 strain An. gambiae. Molecular modeling studies suggest the lower species-selectivity of the aryl dimethylcarbamates can be attributed to a less flexible acyl pocket in AgAChE relative to hAChE. The improved tarsal contact toxicity of the aryl dimethylcarbamates relative to the corresponding methylcarbamates is attributed to a range of complementary phenomena. With respect to the pyrazol-4-yl methylcarbamates, the previously observed low An. gambiae-selectivity of compounds bearing α-branched 1-alkyl groups was improved by employing ß- and γ-branched 1-alkyl groups. Compounds 22a (cyclopentylmethyl), 21a (cyclobutylmethyl), and 26a (3-methylbutyl) offer 250-fold, 120-fold, and 96-fold selectivity, respectively, for inhibition of AgAChE vs. hAChE. Molecular modeling studies suggests the high species-selectivity of these compounds can be attributed to the greater mobility of the W84 side chain in the choline-binding site of AgAChE, compared to that of W86 in hAChE. Compound 26a has reasonable contact toxicity to G3 strain An. gambiae (LC50 = 269 µg/mL) and low cross-resistance to Akron strain (LC50 = 948 µg/mL), which bears the G119S resistance mutation.


Asunto(s)
Anopheles/efectos de los fármacos , Carbamatos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Insecticidas/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Anopheles/fisiología , Carbamatos/química , Inhibidores de la Colinesterasa/química , Femenino , Humanos , Resistencia a los Insecticidas/genética , Insecticidas/química , Modelos Moleculares , Mutación
15.
Molecules ; 23(12)2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30501133

RESUMEN

As part of our ongoing silybin project, this study aims to introduce a basic nitrogen-containing group to 7-OH of 3,5,20-O-trimethyl-2,3-dehydrosilybin or 3-OH of 5,7,20-O-trimethyl-2,3-dehydrosilybin via an appropriate linker for in vitro evaluation as potential anti-prostate cancer agents. The synthetic approaches to 7-O-substituted-3,5,20-O-trimethyl-2,3-dehydrosilybins through a five-step procedure and to 3-O-substituted-5,7,20-O-trimethyl-2,3- dehydrosilybins via a four-step transformation have been developed. Thirty-two nitrogen-containing derivatives of silybin have been achieved through these synthetic methods for the evaluation of their antiproliferative activities towards both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145) using the WST-1 cell proliferation assay. These derivatives exhibited greater in vitro antiproliferative potency than silibinin. Among them, 11, 29, 31, 37, and 40 were identified as five optimal derivatives with IC50 values in the range of 1.40⁻3.06 µM, representing a 17- to 52-fold improvement in potency compared to silibinin. All these five optimal derivatives can arrest the PC-3 cell cycle in the G0/G1 phase and promote PC-3 cell apoptosis. Derivatives 11, 37, and 40 are more effective than 29 and 31 in activating PC-3 cell apoptosis.


Asunto(s)
Neoplasias de la Próstata/patología , Silibina/síntesis química , Silibina/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Masculino , Silibina/química , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 25(17): 4768-4777, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28760528

RESUMEN

Twenty-two 3-O-substituted-3',4',5'-trimethoxyflavonols have been designed and synthesized for their anti-proliferative activity towards three human prostate cancer cell lines. Our results indicate that most of them are significantly more potent than the parent 3',4',5'-trimethoxyflavonol in inhibiting the cell proliferation in PC-3 and LNCaP prostate cancer cell models. 3-O-Substituted-3',4',5'-trimethoxyflavonols have generally higher potency towards PC-3 and LNCaP cell lines than the DU145 cell line. Incorporation of an ethyl group to 3-OH of 3',4',5'-trimethoxyflavonol leads to 3-O-ethyl-3',4',5'-trimethoxyflavonol as the optimal derivative with up to 36-fold enhanced potency as compared with the corresponding lead compound 3',4',5'-trimethoxyflavonol, but with reversed PC-3 cell apoptotic response. Introduction of a dipentylaminopropyl group to 3-OH increases not only the antiproliferative potency but also the ability in activating PC-3 cell apoptosis. Our findings imply that modification on 3-OH of trimethoxyflavonol can further enhance its in vitro anti-proliferative potency and PC-3 cell apoptosis induction.


Asunto(s)
Antineoplásicos/síntesis química , Flavonoles/química , Flavonoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Flavonoles/síntesis química , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Relación Estructura-Actividad
17.
Bioorg Med Chem ; 25(17): 4845-4854, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28756013

RESUMEN

To investigate the effects of alkylation at 5-OH and 20-OH of 2,3-dehydrosilybin on prostate cancer cell proliferation, the synthetic approaches to 5- or/and 20-O-alkyl-2,3-dehydrosilybins, through a multi-step sequence from commercially available silybin, have been successfully developed. The first three reactions in the syntheses were completed through a one-pot procedure by managing anaerobic and aerobic conditions. With these synthetic methods in hand, twenty-one 2,3-dehydrosilybins, including seven 20-O-alkyl, seven 5,20-O-dialkyl, and seven 5-O-alkyl-2,3-dehydrosilybins, have been achieved for the evaluation of their biological profiles. Our WST-1 cell proliferation assay data indicate that nineteen out of the twenty-one 2,3-dehydrosilybins possess significantly improved antiproliferative potency as compared with silybin toward both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145). 5-O-Alkyl-2,3-dehydrosilybins were identified as the optimal subgroup that can consistently inhibit cell proliferation in three prostate cancer cell models with all IC50 values lower than 8µM. Our flow cytometry-based assays also demonstrate that 5-O-heptyl-2,3-dehydrosilybin effectively arrests the cell cycle in the G0/G1 phase and activates PC-3 cell apoptosis.


Asunto(s)
Antineoplásicos/síntesis química , Silimarina/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Silimarina/síntesis química , Silimarina/toxicidad , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 26(17): 4241-5, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27476422

RESUMEN

Flavonoids are a large class of polyphenolic compounds ubiquitously distributed in dietary plants with an array of biological activities. Flavonols are a major sub-class of flavonoids featuring a hydroxyl group at C-3. Certain natural flavonols, such as quercetin and fisetin, have been shown by in vitro cell-based and in vivo animal experiments to be potential anti-prostate cancer agents. However, the Achilles' heel of flavonols as drug candidates is their moderate potency and poor pharmacokinetic profiles. This study aims to explore the substitution effect of 3-OH in flavonols on the in vitro anti-proliferative potency against both androgen-sensitive and androgen-insensitive human prostate cancer cell lines. Our first lead flavonol (3',4'-dimethoxyflavonol), eight 3-O-alkyl-3',4'-dimethoxyflavonols, and six 3-O-aminoalkyl-3',4'-dimethoxyflavonols have been synthesized through aldol condensation and the Algar-Flynn-Oyamada (AFO) reaction. The WST-1 cell proliferation assay indicates (i) that all synthesized 3-O-alkyl-3',4'-dimethoxyflavonols and 3-O-aminoalkyl-3',4'-dimethoxyflavonols are more potent than the parent 3',4'-dimethoxyflavonol and the natural flavonol quercetin in suppressing prostate cancer cell proliferation; and (ii) that incorporation of a dibutylamino group to the 3-OH group through a three- to five-carbon linker leads to the optimal derivatives with up to 292-fold enhanced potency as compared with the parent flavonol. Flow cytometry analysis showed that the most potent derivative 22 can activate PC-3 cell cycle arrest at the G2/M phase and induce PC-3 cell apoptosis. No inhibitory ability of 22 up to 50µM concentration was observed against PWR-1E normal human epithelial prostate cells, suggesting its in vitro safety profile. The results indicate that chemical modulation at 3-OH is a vital strategy to optimize flavonols as anti-prostate cancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Flavonoles/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonoides/química , Flavonoides/toxicidad , Flavonoles/síntesis química , Flavonoles/toxicidad , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Quercetina/química , Quercetina/toxicidad , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 26(14): 3226-3231, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27261177

RESUMEN

Eight 3-O-alkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin through two synthetic approaches. A one-pot reaction, starting with aerobic oxidation of silibinin followed by direct alkylation of the phenolic hydroxyl group in the subsequent 2,3-dehydrosilibinin, furnishes the desired derivatives in 11-16% yields. The three-step procedure employing benzyl ether to protect 7-OH in silibinin generates the desired derivatives in 30-46% overall yields. The antiproliferative activity of the 2,3-dehydrosilibinin derivatives against both androgen-sensitive and androgen-insensitive prostate cancer cells have been assessed using a WST-1 cell proliferation assay. All derivatives exhibited greater antiproliferative potency than silibinin, with 2,3-dehydrosilibinins each possessing a three- to five-carbon linear alkyl group to 3-OH (IC50 values in a range of 1.71-3.06µM against PC-3 and LNCaP cells) as the optimal derivatives. The optimal potency was reached with three- to five-carbon alkyl groups. Our findings suggest that 3-O-propyl-2,3-dehydrosilibinin effectively inhibits the growth of PC-3 prostate cancer cells by arresting cell cycle in the G0/G1 phase, but not by activating PC-3 cell apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Silimarina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Estructura Molecular , Neoplasias de la Próstata/patología , Silimarina/síntesis química , Silimarina/química , Relación Estructura-Actividad
20.
Bioorg Med Chem ; 24(19): 4692-4700, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27543391

RESUMEN

In search of more effective chemotherapeutics for the treatment of castration-resistant prostate cancer and inspired by curcumin analogues, twenty five (1E,3E,6E,8E)-1,9-diarylnona-1,3,6,8-tetraen-5-ones bearing two identical terminal heteroaromatic rings have been successfully synthesized through Wittig reaction followed by Horner-Wadsworth-Emmons reaction. Twenty-three of them are new compounds. The WST-1 cell proliferation assay was employed to assess their anti-proliferative effects toward both androgen-sensitive and androgen-insensitive human prostate cancer cell lines. Eighteen out of twenty-five synthesized compounds possess significantly improved potency as compared with curcumin. The optimal compound, 78, is 14- to 23-fold more potent than curcumin in inhibiting prostate cancer cell proliferation. It can be concluded from our data that 1,9-diarylnona-1,3,6,8-tetraen-5-one can serve as a new potential scaffold for the development of anti-prostate cancer agents and that pyridine-4-yls and quinolin-4-yl act as optimal heteroaromatic rings for the enhanced potency of this scaffold. Two of the most potent compounds, 68 and 75, effectively suppress PC-3 cell proliferation by activating cell apoptosis and by arresting cell cycle in the G0/G1 phase.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Próstata/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA