Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 651
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660786

RESUMEN

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

2.
FASEB J ; 38(2): e23404, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197290

RESUMEN

The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.


Asunto(s)
Calpaína , Proteómica , Animales , Ratones , Ratones Endogámicos C57BL , Calpaína/genética , Transporte de Electrón , Complejo I de Transporte de Electrón , Complejo IV de Transporte de Electrones , Estrés del Retículo Endoplásmico , Mitocondrias Cardíacas
3.
Am J Physiol Heart Circ Physiol ; 326(2): H385-H395, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099846

RESUMEN

Mitochondrial function in aged hearts is impaired, and studies of isolated mitochondria are commonly used to assess their function. The two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), are affected by aging. However, the yield of these mitochondria, particularly SSM, is limited in the mouse heart because of the smaller heart size. To address this issue, the authors developed a method to isolate a mixed population (MIX) of SSM and IFM mitochondria from a single mouse heart. The aim of the study was to compare the mitochondrial function between SSM, IFM, and the MIX population from young and aged mouse hearts. The MIX population had a higher yield of total protein and citrate synthase activity from both young and aged hearts compared with the individual yields of SSM or IFM. Oxidative phosphorylation (OXPHOS) decreased in aged SSM and IFM compared with young SSM and IFM, as well as in the MIX population isolated from aged hearts compared with young hearts, when using complex I or IV substrates. Furthermore, aging barely affected the sensitivity to mitochondrial permeability transition pore (MPTP) opening in SSM, whereas the sensitivity was increased in IFM isolated from aged hearts and in the MIX population from aged hearts compared with the corresponding populations isolated from young hearts. These results suggest that mitochondrial dysfunction exists in aged hearts and the isolation of a MIX population of mitochondria from the mouse heart is a potential approach to studying mitochondrial function in the mouse heart.NEW & NOTEWORTHY We developed two methods to isolate mitochondria from a single mouse heart. We compared mitochondrial function in young and aged mice using mitochondria isolated with different methods. Both methods can be successfully used to isolate cardiac mitochondria from single mouse hearts. Our results provide the flexibility to isolate mitochondria from a single mouse heart based on the purpose of the study.


Asunto(s)
Corazón , Enfermedades Mitocondriales , Ratones , Animales , Mitocondrias Cardíacas/metabolismo , Fosforilación Oxidativa , Envejecimiento , Enfermedades Mitocondriales/metabolismo
4.
Small ; 20(26): e2310224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38321843

RESUMEN

Regulating the asymmetric active center of a single-atom catalyst to optimize the binding energy is critical but challenging to improve the overall efficiency of the electrocatalysts. Herein, an effective strategy is developed by introducing an axial hydroxyl (OH) group to the Fe─N4 center, simultaneously assisting with the further construction of asymmetric configurations by replacing one N atom with one S atom, forming FeN3S1─OH configuration. This novel structure can optimize the electronic structure and d-band center shift to reduce the reaction energy barrier, thereby promoting oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The optimal catalyst, FeSA-S/N-C (FeN3S1─OH anchored on hollow porous carbon) displays remarkable ORR performance with a half-wave potential of 0.92, 0.78, and 0.64 V versus RHE in 0.1 m KOH, 0.5 m H2SO4, and 0.1 m PBS, respectively. The rechargeable liquid Zn-air batteries (LZABs) equipped with FeSA-S/N-C display a higher power density of 128.35 mW cm-2, long-term operational stability of over 500 h, and outstanding reversibility. More importantly, the corresponding flexible solid-state ZABs (FSZABs@FeSA-S/N-C) display negligible voltage changes at different bending angles during the charging and discharging processes. This work provides a new perspective for the design and optimization of asymmetric configuration for single-atom catalysts applied to the area of energy conversion and storage.

5.
Mol Carcinog ; 63(5): 938-950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353288

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis and a 5-year survival rate of less than 11%. As a member of the CAP superfamily of proteins, the role of peptidase inhibitor 16 (Pi16) in tumor progression is still unclear. Immunohistochemistry and quantitative RT-PCR methods were used to detect the expression levels of Pi16 protein and mRNA in PDAC patients. CRISPR/Cas9 technology was used to knock out the expression of Pi16 in PDAC cell lines. In vivo and in vitro experiments were used to verify the effect of Pi16 on PDAC proliferation ability. By RNA sequencing, we found that oligoadenylate synthetase L (OASL) can serve as a potential downstream target of Pi16. The expression of Pi16 was higher in PDAC tissues than in matched adjacent tissues. High expression of Pi16 was associated with PDAC progression and poor prognosis. Overexpression of Pi16 could promote the proliferation of PDAC cells in vitro and in vivo. Bioinformatics analysis and coimmunoprecipitation assays showed that Pi16 could bind to OASL. Moreover, the functional recovery test confirmed that Pi16 could promote the proliferation of PDAC via OASL. Our present study demonstrates that Pi16 might participate in the occurrence and development of PDAC by regulating cell proliferation by binding to OASL, indicating that Pi16 might be a promising novel therapeutic target for PDAC.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Nucleótidos de Adenina , Carcinoma Ductal Pancreático , Glicoproteínas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Glicoproteínas/metabolismo , Proteínas Portadoras/metabolismo , 2',5'-Oligoadenilato Sintetasa/metabolismo
6.
Magn Reson Med ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968132

RESUMEN

PURPOSE: To reduce the ringing artifacts of the motion-resolved images in free-breathing dynamic pulmonary MRI. METHODS: A golden-step based interleaving (GSI) technique was proposed to reduce ringing artifacts induced by diaphragm drifting. The pulmonary MRI data were acquired using a superior-inferior navigated 3D radial UTE sequence in an interleaved manner during free breathing. Successive interleaves were acquired in an incoherent fashion along the polar direction. Four-dimensional images were reconstructed from the motion-resolved k-space data obtained by retrospectively binning. The reconstruction algorithms included standard nonuniform fast Fourier transform (NUFFT), Voronoi-density-compensated NUFFT, extra-dimensional UTE, and motion-state weighted motion-compensation reconstruction. The proposed interleaving technique was compared with a conventional sequential interleaving (SeqI) technique on a phantom and eight subjects. RESULTS: The quantified ringing artifacts level in the motion-resolved image is positively correlated with the quantified nonuniformity level of the corresponding k-space. The nonuniformity levels of the end-expiratory and end-inspiratory k-space binned from GSI data (0.34 ± 0.07, 0.33 ± 0.05) are significantly lower with statistical significance (p < 0.05) than that binned from SeqI data (0.44 ± 0.11, 0.42 ± 0.12). Ringing artifacts are substantially reduced in the dynamic images of eight subjects acquired using the proposed technique in comparison with that acquired using the conventional SeqI technique. CONCLUSION: Ringing artifacts in the motion-resolved images induced by diaphragm drifting can be reduced using the proposed GSI technique for free-breathing dynamic pulmonary MRI. This technique has the potential to reduce ringing artifacts in free-breathing liver and kidney MRI based on full-echo interleaved 3D radial acquisition.

7.
Am J Pathol ; 193(3): 296-312, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509119

RESUMEN

The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.


Asunto(s)
Enfermedades Intestinales , Sepsis , Ratones , Animales , Sirolimus/farmacología , Sirolimus/metabolismo , Mucosa Intestinal/metabolismo , Enfermedades Intestinales/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Mamíferos , Quinasa Tipo Polo 1
8.
Cancer Cell Int ; 24(1): 91, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429830

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) belong to a class of covalently closed single stranded RNAs that have been implicated in cancer progression. Former investigations showed that hsa-circ-0013561 is abnormally expressed in head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of hsa-circ-0013561 during the progress of HNSCC still unclear. METHODS: Present study applied FISH and qRT-PCR to examine hsa-circ-0013561 expression in HNSCC cells and tissue samples. Dual-luciferase reporter assay was employed to identify downstream targets of hsa-circ-0013561. Transwell migration, 5-ethynyl-2'-deoxyuridine incorporation, CCK8 and colony formation assays were utilized to test cell migration and proliferation. A mouse tumor xenograft model was utilized to determine the hsa-circ-0013561 roles in HNSCC progression and metastasis in vivo. RESULTS: We found that hsa-circ-0013561 was upregulated in HNSCC tissue samples. hsa-circ-0013561 downregulation inhibited HNSCC cell proliferation and migration to promote apoptosis and G1 cell cycle arrest. The dual-luciferase reporter assay revealed that miR-7-5p and PDK3 are hsa-circ-0013561 downstream targets. PDK3 overexpression or miR-7-5p suppression reversed the hsa-circ-0013561-induced silencing effects on HNSCC cell proliferation and migration. PDK3 overexpression reversed miR-7-5p-induced effects on HNSCC cell proliferation and migration. CONCLUSION: The findings suggest that hsa-circ-0013561 downregulation inhibits HNSCC metastasis and progression through PDK3 expression and miR-7-5p binding modulation.

9.
J Magn Reson Imaging ; 59(3): 954-963, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37312270

RESUMEN

BACKGROUND: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge. PURPOSE: To develop a pulse sequence capable of selectively detecting and quantifying the 1 H signal of GABA in human brains based on optimal controlled spin singlet order. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: A phantom of GABA (pH = 7.3 ± 0.1) and 11 healthy subjects (5 females and 6 males, body mass index: 21 ± 3 kg/m2 , age: 25 ± 4 years). FIELD STRENGTH/SEQUENCE: 7 Tesla, 3 Tesla, GABA-targeted magnetic resonance spectroscopy (GABA-MRS-7 T, GABA-MRS-3 T), magnetization prepared two rapid acquisition gradient echoes sequence. ASSESSMENT: By using the developed pulse sequences applied on the phantom and healthy subjects, the signals of GABA were successfully selectively probed. Quantification of the signals yields the concentration of GABA in the dorsal anterior cingulate cortex (dACC) in human brains. STATISTICAL TESTS: Frequency. RESULTS: The 1 H signals of GABA in the phantom and in the human brains of healthy subjects were successfully detected. The concentration of GABA in the dACC of human brains was 3.3 ± 1.5 mM. DATA CONCLUSION: The developed pulse sequences can be used to selectively probe the 1 H MR signals of GABA in human brains in vivo. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Estudios Prospectivos , Espectroscopía de Resonancia Magnética/métodos , Ácido gamma-Aminobutírico
10.
Cerebellum ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558026

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.

11.
Epilepsy Behav ; 157: 109870, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38870867

RESUMEN

OBJECTIVE: To evaluate the incidence and the independent risk factors of SRS-related epilepsy in patients with supratentorial brain metastases (st-BMs), providing evidences for prevention or reduction secondary epilepsy after SRS. METHODS: Patients with st-BMs from four gamma knife centers who developed secondary epilepsy after SRS were retrospectively studied between January 1, 2017 and June 31, 2023. The incidence and clinical characteristics of the patients with secondary epilepsy were analyzed. The predictive role of baseline clinical-demographic variables was evaluated according to univariate and multivariate logistic regression model. The impact of secondary epilepsy on patients' OS was evaluated as well by log-rank test. RESULTS: 11.3 % (126/1120) of the patients with totally 158 st-BMs experienced secondary epilepsy after SRS in median 21 days. 61.9 % (78/126) of the patients experienced simple partial seizures. 91.3 % (115/126) patients achieved good seizure control after received 1-2 kinds of AEDs for median 90 days, while 7.1 % (9/126) of the patients suffered from refractory epilepsy. Patients had higher risk of secondary epilepsy if the tumor located in cortex and/or hippocampus, peri-tumor edema larger than 20.3 cm3 before SRS, had epilepsy history, and failed to receive bevacizumab prior to SRS. There was no difference in the OS of patients who experience secondary epilepsy or not after SRS. CONCLUSIONS: The incidence of SRS-related secondary epilepsy is 11.3 % in patients with st-BMs in this retrospective study. The risk of secondary epilepsy is higher in patients with st-BM located in cortex and/or hippocampus area, peri-tumor edema larger than 20.3 cm3 before SRS, and epilepsy history. Bevacizumab is suggested prior to SRS therapy, as it could be used for the control of peri-tumor edema and SRS-related damage, hence reduce the risk of secondary epilepsy. However, whether or not patients suffered from secondary epilepsy after SRS does not affect their OS.

12.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624109

RESUMEN

A diabatic potential energy matrix (DPEM) for the two lowest states of BeH2+ has been constructed using the combined-hyperbolic-inverse-power-representation (CHIPR) method. By imposing symmetry constraints on the coefficients of polynomials, the complete nuclear permutation inversion symmetry is correctly preserved in the CHIPR functional form. The symmetrized CHIPR functional form is then used in the diabatization by ansatz procedure. The ab initio energies are reproduced with satisfactory accuracy. In addition, the CHIPR-based DPEM also reproduces the local topology of a conical intersection. Future work will focus on a complete four-state diabatic representation with emphasis on the long-range interactions and spin-orbit couplings, which will enable accurate quantum scattering calculations for the Be+(2P) + H2 → BeH+(X1Σ+) + H(2S) reaction.

13.
J Chem Phys ; 160(23)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38884408

RESUMEN

The orientation and rearrangement of water on a gold electrode significantly influences its physicochemical heterogeneous performance. Despite numerous experimental and theoretical studies aimed at uncovering the structural characteristics of interfacial water, the orientational behavior resulting from electrode-induced rearrangements remains a subject of ongoing debate. Here, we employed molecular dynamics simulations to investigate the adaptive structure and dynamics properties of interfacial water on Au(111) and Au(100) surfaces by considering a polarizable model for Au atoms in comparison with the non-polarizable model. Compared to the nonpolarizable systems, the polarization effect can enhance the interaction between water molecules and the gold surface. Unexpectedly, the rotational dynamics directly associated with the orientational behavior of water adjacent to the gold surface is accelerated, thereby reducing the hydrogen bond lifetime. The underlying mechanism for this anomalous phenomenon originates from the polarization effect, which induces the attraction of the positive hydrogen atoms to the surface by the negative image charge. This leads to a change in orientation that disrupts the hydrogen bonds in the first water layer and subsequently accelerates reorientation dynamics of water molecules adjacent to the gold surface. These results shed light on the intricate interplay between polarization effects and water molecule dynamics on metal surfaces, establishing the foundation for the rational regulation of the orientation of interfacial water.

14.
Neurosurg Rev ; 47(1): 137, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564039

RESUMEN

Despite 2-staged stereotactic radiosurgery (2-SSRS) has been reported to provide patients with improved survival and limited toxicity, 2-SSRS for brainstem metastases (BSM) larger than 2 cm3 remains challenging. We tried to find out the effectiveness and safety of 2-SSRS plus bevacizumab therapy for BSMs over 2 cm3 and prognostic factors that related to the tumor local control. Patients that received 2-SSRS plus bevacizumab therapy from four gamma knife center were retrospectively studied from Jan 2014 to December 2023. Patients' domestic characteristics and the tumor features were evaluated before and after the treatment. Cox regression model was used to find out prognostic factors for tumor local control. 53 patients with 63 lesions received the therapy. The median peri-tumor edema volume greatly reduced at the end of therapy (P < 0.01), the median tumor volume dramatically reduced (P < 0.01) and patients' KPS score improved significantly (P < 0.05) 3 months after the therapy. Patients' median OS was 12.8 months. The tumor local control rate at 3, 6, and 12 months was 98.4%, 93.4%, and 85.2%. The incidence side effects were mainly oral and nasal hemorrhage (5.7%, 3/53), and radiation necrosis (13.2%, 7/53). Patients with primary lung adenocarcinoma, therapeutic dose over 12 Gy at second-stage SRS, primary peri-tumor edema volume less than 2.3 cm³, primary tumor volume less than 3.7 cm³ would enjoy longer tumor local control. These results suggested that 2-SSRS plus bevacizumab therapy was effective and safe for BSMs over 2 cm3. However, it is important for patients with BSM to receive early diagnosis and treatment to achieve good tumor local control.


Asunto(s)
Tronco Encefálico , Neoplasias , Humanos , Bevacizumab/uso terapéutico , Estudios Retrospectivos , Edema
15.
J Lipid Res ; 64(5): 100363, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966904

RESUMEN

CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3ß-hydroxy-5-cholesten-(25R)26-oic acid (3ßHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3ßHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3ßHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3ßHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3ßHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3ßHCA accumulation. The results suggest 26HC/3ßHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3ßHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Ratones Endogámicos C57BL
16.
Am J Physiol Heart Circ Physiol ; 324(1): H57-H66, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426883

RESUMEN

Donation after circulatory death (DCD) donor hearts are not routinely used for heart transplantation (HTx) because of ischemic damage, which is inherent to the DCD process. HTx outcomes are suboptimal in males who received female donor hearts. The exact mechanism for suboptimal outcomes from female donor hearts has not been defined. Differential susceptibility to ischemia tolerance, which would play a significant role in DCD donation, could be a reason but has not been studied. We studied the influence of sex on global myocardial ischemia tolerance and mitochondrial function. Sprague-Dawley rats of both sexes were assigned to DCD (n = 32) or control beating-heart donor (CBD, n = 28) groups. DCD hearts underwent 25 min of in vivo global myocardial ischemia and 90 min of ex vivo Krebs-Henseleit buffer perfusion at 37°C. CBD hearts were procured without ischemia. Infarct size was determined in hearts following 90 min of reperfusion, and in another set of hearts, mitochondrial function (oxidative-phosphorylation) was studied following 60 min of reperfusion. Infarct size was increased 3.3-fold in male and 3.1-fold in female DCD hearts compared with CBD hearts. However, infarct size (%) was comparable in female and male DCD hearts (male: 25.4 ± 3.7 vs. female 19.0 ± 3.3, P = NS). Oxidative phosphorylation was similarly decreased in male and female DCD hearts' mitochondria compared with CBD hearts' mitochondria. Thus, neither infarct size nor mitochondrial dysfunction was higher in female DCD hearts. These results suggest that the susceptibility to ischemia is not the reason for suboptimal HTx outcomes with female donor hearts.NEW & NOTEWORTHY The current study shows cardiac injury is not increased in female DCD hearts following global ischemia-reperfusion compared with male DCD hearts. In addition, mitochondrial dysfunction with DCD ischemia-reperfusion is comparable in both sexes. Sex-specific immune responses and hormone receptor modulation may contribute to suboptimal outcomes in male HTx recipients with female donor hearts.


Asunto(s)
Enfermedad de la Arteria Coronaria , Trasplante de Corazón , Isquemia Miocárdica , Ratas , Animales , Masculino , Femenino , Humanos , Donantes de Tejidos , Ratas Sprague-Dawley , Mitocondrias Cardíacas , Infarto
17.
Small ; 19(48): e2302464, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37594730

RESUMEN

The development of innovative and efficient Fe-N-C catalysts is crucial for the widespread application of zinc-air batteries (ZABs), where the inherent oxygen reduction reaction (ORR) activity of Fe single-atom sites needs to be optimized to meet the practical application. Herein, a three-dimensional (3D) hollow hierarchical porous electrocatalyst (ZIF8@FePMPDA-920) rich in asymmetric Fe-N4 -OH moieties as the single atomic sites is reported. The Fe center is in a penta-coordinated geometry with four N atoms and one O atom to form Fe-N4 -OH configuration. Compared to conventional Fe-N4 configuration, this unique structure can weaken the adsorption of intermediates by reducing the electron density of the Fe center for oxygen binding, which decreases the energy barrier of the rate-determining steps (RDS) to accelerate the ORR and oxygen evolution reaction (OER) processes for ZABs. The rechargeable liquid ZABs (LZABs) equipped with ZIF8@FePMPDA-920 display a high power density of 123.11 mW cm-2 and a long cycle life (300 h). The relevant flexible all-solid-state ZABs (FASSZABs) also display outstanding foldability and cyclical stability. This work provides a new perspective for the structural design of single-atom catalysts in the energy conversion and storage areas.

18.
J Med Virol ; 95(1): e28385, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478250

RESUMEN

The global outbreak of the monkeypox virus (MPXV) highlights the need for rapid and cost-effective MPXV detection tools to effectively monitor and control the monkeypox disease. Herein, we demonstrated a portable CRISPR-Cas-based system for naked-eye detection of MPXV. The system harnesses the high selectivity of CRISPR-Cas12 and the isothermal nucleic acid amplification potential of recombinase polymerase amplification. It can detect both the current circulating MPXV clade and the original clades. We reached a limit of detection (LoD) of 22.4 aM (13.5 copies/µl) using a microtiter plate reader, while the visual LoD of the system is 75 aM (45 copies/µl) in a two-step assay, which is further reduced to 25 aM (15 copies/µl) in a one-pot system. We compared our results with quantitative polymerase chain reaction and obtained satisfactory consistency. For clinical application, we demonstrated a sensitive and precise visual detection method with attomolar sensitivity and a sample-to-answer time of 35 min.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Sistemas CRISPR-Cas , Secuencia de Bases , Mpox/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos
19.
Cytokine ; 162: 156113, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563524

RESUMEN

BACKGROUND: Sepsis and its related complications are very challenging in the intensive care unit, among which intestinal barrier injury is a general manifestation. Polo-like kinase 1 (PLK1) is widely studied in cancer, while its role in sepsis is poorly understood. In this study, the efficiency of PLK1 as a marker of intestinal barrier function as well as a predictor of mortality in sepsis was evaluated. METHODS: The level of serum PLK1 was measured in septic patients (n = 51) and controls (n = 20); subsequently, its correlation with serum diamine oxidase (DAO), d-lactate, and endotoxin levels and its ability topredict mortality were analysed. The survival rate and barrier injury degree were also assessed in septic mice. RESULTS: Serum PLK1 levels were elevated in septic patients, were negatively correlated with serum DAO, d-lactate, and endotoxin levels, and had a high predictive value for 28-day mortality in patients. The serum PLK1 level in non-survivors was lower. The expression of PLK1 in the intestine was decreased in septic mice, and overexpression or inhibition of PLK1 alleviated or aggravated intestinal barrier injury, respectively, as evaluated by Chiu's score, serum levels of DAO and d-lactate, and expression of tight junction proteins. Overexpressing PLK1 also decreased the 72-hour death rate of septic mice. Further study also revealed the negative correlation of PLK1 and IL-6 in patients, and increasing or interfering with PLK1 expression reduced or increased the serum IL-6 level in mice. CONCLUSIONS: PLK1 plays a critical role in intestinal barrier function during sepsis, providing a novel perspective for sepsis therapy in the clinic.


Asunto(s)
Mucosa Intestinal , Sepsis , Animales , Ratones , Endotoxinas , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Ácido Láctico , Investigación Biomédica Traslacional , Quinasa Tipo Polo 1
20.
J Cardiovasc Pharmacol ; 81(6): 389-391, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995087

RESUMEN

ABSTRACT: Donation after circulatory death (DCD) donor hearts sustain ischemic damage and are not routinely used for heart transplantation. DCD heart injury, particularly reperfusion injury, is primarily mediated by releasing reactive oxygen species from the damaged mitochondria (complex I of the electron transport chain). Amobarbital (AMO) is a transient inhibitor of complex I and is known to reduce releasing reactive oxygen species generation. We studied the beneficial effects of AMO in transplanted DCD hearts. Sprague-Dawley rats were assigned to 4 groups-DCD or DCD + AMO donors and control beating-heart donors (CBD) or CBD + AMO donors (n = 6-8 each). Anesthetized rats were connected to a ventilator. The right carotid artery was cannulated, heparin and vecuronium were administered. The DCD process started by disconnecting the ventilator. DCD hearts were procured after 25 minutes of in-vivo ischemia, whereas CBD hearts were procured without ischemia. At procurement, all donor hearts received 10 mL of University of Wisconsin cardioplegia solution. The CBD + AMO and DCD + AMO groups received AMO (2 mM) dissolved in cardioplegia. Heterotopic heart transplantation was performed by anastomosing the donor aorta and pulmonary artery to the recipient's abdominal aorta and inferior vena cava. After 14 days, transplanted heart function was measured with a balloon tip catheter placed in the left ventricle. Compared with CBD hearts, DCD hearts had significantly lower developed pressure. AMO treatment significantly improved cardiac function in DCD hearts. Treatment of DCD hearts at the time of reperfusion with AMO resulted in an improvement of transplanted heart function that was comparable with the CBD hearts.


Asunto(s)
Trasplante de Corazón , Ratas , Animales , Humanos , Trasplante de Corazón/efectos adversos , Trasplante de Corazón/métodos , Donantes de Tejidos , Especies Reactivas de Oxígeno , Transporte de Electrón , Ratas Sprague-Dawley , Muerte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA