Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 75(11): 3300-3321, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447063

RESUMEN

In a gene chip analysis, rice (Oryza sativa) OsSMP2 gene expression was induced under various abiotic stresses, prompting an investigation into its role in drought resistance and abscisic acid signaling. Subsequent experiments, including qRT-PCR and ß-glucuronidase activity detection, affirmed the OsSMP2 gene's predominant induction by drought stress. Subcellular localization experiments indicated the OsSMP2 protein primarily localizes to the cell membrane system. Overexpressing OsSMP2 increased sensitivity to exogenous abscisic acid, reducing drought resistance and leading to reactive oxygen species accumulation under drought stress. Conversely, in simulated drought experiments, OsSMP2-silenced transgenic plants showed significantly longer roots compared with the wild-type Nipponbare. These results suggest that OsSMP2 overexpression negatively affects rice drought resistance, offering valuable insights into molecular mechanisms, and highlight OsSMP2 as a potential target for enhancing crop resilience to drought stress.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Estrés Fisiológico , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Plantas Modificadas Genéticamente , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
2.
Neuroendocrinology ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964285

RESUMEN

INTRODUCTION: To investigate the autoinflammatory effect and biological behaviour of simvastatin (SIM) on adamantinomatous craniopharyngioma (ACP) cells. METHODS: Craniopharyngiomas imaging, intraoperative observations, and tumour histopathology were employed to investigate the correlation between esters and craniopharyngiomas. Filipin III fluorescent probe verified the validity of SIM on the alternations of synthesized cholesterol in craniopharyngioma cells. The cell counting kit-8 (CCK8) assay detected the impacts of SIM on cell proliferation and determined the IC50 value of tumour cells. Reverse transcription polymerase chain reaction (RT-PCR) measured the expression of inflammatory factors. Flow cytometry technique detected the cell cycle and apoptosis, and cell scratch assay judged the cell migration. Meanwhile, Western blot was adopted to determine the expression of proteins related to inflammation, proliferation, and apoptosis signalling pathways. RESULTS: In the ACP tumour parenchyma, many cholesterol crystalline clefts were observed, and the deposition of esters was closely associated with craniopharyngioma inflammation. After simvastatin intervention, a reduction in cholesterol synthesis within ACP was noted. RT-PCR analysis revealed SIM inhibited the transcription of inflammatory factors in ACP cells. Western blot analysis demonstrated SIM inhibited nuclear factor-kappa B (NF-κB) p65 activation expression while promoted the expressions of Cl-caspase-3 and P38 MAPK. CCK8 assay indicated a decrease in ACP cell activity upon SIM treatment. Scratch assay signified that SIM hindered ACP cell migration. Flow cytometry results suggested that the drug promoted ACP cell apoptosis. CONCLUSION: SIM suppressed the inflammatory response to craniopharyngiomas by inhibiting craniopharyngioma cholesterol synthesis, inhibited proliferation of ACP cells, and promoted their apoptosis.

3.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38682378

RESUMEN

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Asunto(s)
ADN , Humanos , ADN/química , Transfección/métodos , Polímeros/química , Respuesta al Choque Térmico/efectos de los fármacos , Temperatura , Calor
4.
Nano Lett ; 23(14): 6760-6767, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37279451

RESUMEN

Easily deploying new vaccines globally to combat disease outbreaks has been highlighted as a major necessity by the World Health Organization. RNA-based vaccines using lipid nanoparticles (LNPs) as a drug delivery system were employed to great effect during the recent COVID-19 pandemic. However, LNPs are still unstable at room temperature and agglomerate over time during storage, rendering them ineffective for intracellular delivery. We demonstrate the suitability of nanohole arrays (nanopackaging) as patterned surfaces to separate and store functionalized LNPs (fLNPs) in individual recesses, which can be expanded to other therapeutics. Encapsulating calcein as a model drug, we show through confocal microscopy the effective loading of fLNPs into our nanopackaging for both wet and dry systems. We prove quantifiably pH-mediated capture and subsequent unloading of over 30% of the fLNPs using QCM-D on alumina surfaces altering the pH from 5.5 to 7, displaying controllable storage at the nanoscale.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Pandemias , COVID-19/prevención & control , Sistemas de Liberación de Medicamentos
5.
Proc Natl Acad Sci U S A ; 117(17): 9202-9207, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32277024

RESUMEN

It has long been predicted that oscillatory behavior exists in reactivity as a function of collision energy for heavy-light-heavy (HLH) chemical reactions in which a light atom is transferred between two heavy atoms or groups of atoms, but direct observation of such a behavior in bimolecular reactions remains a challenge. Here we report a joint theoretical and crossed-molecular-beam study on the Cl + CH4 → HCl + CH3 reaction. A distinctive peak at a collision energy of 0.15 eV for the CH3(v = 0) product was experimentally detected in the backward scattering direction. Detailed quantum-dynamics calculations on a highly accurate potential energy surface revealed that this feature originates from the reactivity oscillation in this HLH polyatomic reaction. We anticipate that such reactivity oscillations exist in many HLH reactions involving polyatomic reagents.

6.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239859

RESUMEN

Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiología , Proteómica , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833888

RESUMEN

Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, and Arabidopsis, and conducted collinearity analysis and gene family analysis. We used Affymetrix array technology to analyze the expression of AP2/EREBP family genes in Chaling wild rice and cultivated rice cultivar Pei'ai64S, which is sensitive to cold. According to the GeneChip results, the expression levels of AP2/EREBP genes in Chaling wild rice were different from those in Pei'ai64S; and the increase rate of 36 AP2/EREBP genes in Chaling wild rice was higher than that in Pei'ai64S. Meanwhile, the MYC elements in cultivated rice and Chaling wild rice for the Os01g49830, Os03g08470, and Os03g64260 genes had different promoter sequences, resulting in the high expression of these genes in Chaling wild rice under low-temperature conditions. Furthermore, we analyzed the upstream and downstream genes of the AP2/EREBP transcription factor family and studied the conservation of these genes. We found that the upstream transcription factors were more conserved, indicating that these upstream transcription factors may be more important in regulating cold stress. Meanwhile, we found the expression of AP2/EREBP pathway genes was significantly increased in recombinant inbred lines from Nipponbare crossing with Chaling wild rice, These results suggest that the AP2/EREBP signaling pathway plays an important role in Chaling wild rice tolerance to cold stress.


Asunto(s)
Respuesta al Choque por Frío , Oryza , Arabidopsis/metabolismo , Frío , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372942

RESUMEN

As the human population grows rapidly, food shortages will become an even greater problem; therefore, increasing crop yield has become a focus of rice breeding programs. The maize gene, ZmDUF1645, encoding a putative member of the DUF1645 protein family with an unknown function, was transformed into rice. Phenotypic analysis showed that enhanced ZmDUF1645 expression significantly altered various traits in transgenic rice plants, including increased grain length, width, weight, and number per panicle, resulting in a significant increase in yield, but a decrease in rice tolerance to drought stress. qRT-PCR results showed that the expression of the related genes regulating meristem activity, such as MPKA, CDKA, a novel crop grain filling gene (GIF1), and GS3, was significantly changed in the ZmDUF1645-overexpression lines. Subcellular colocalization showed that ZmDUF1645 was primarily localized on cell membrane systems. Based on these findings, we speculate that ZmDUF1645, like the OsSGL gene in the same protein family, may regulate grain size and affect yield through the cytokinin signaling pathway. This research provides further knowledge and understanding of the unknown functions of the DUF1645 protein family and may serve as a reference for biological breeding engineering to increase maize crop yield.


Asunto(s)
Sequías , Oryza , Humanos , Oryza/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expresión Génica Ectópica , Fitomejoramiento , Grano Comestible/genética , Grano Comestible/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Entropy (Basel) ; 25(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372196

RESUMEN

This paper is concerned with mobile coded orthogonal frequency division multiplexing (OFDM) systems. In the high-speed railway wireless communication system, an equalizer or detector should be used to mitigate the intercarrier interference (ICI) and deliver the soft message to the decoder with the soft demapper. In this paper, a Transformer-based detector/demapper is proposed to improve the error performance of the mobile coded OFDM system. The soft modulated symbol probabilities are computed by the Transformer network, and are then used to calculate the mutual information to allocate the code rate. Then, the network computes the codeword soft bit probabilities, which are delivered to the classical belief propagation (BP) decoder. For comparison, a deep neural network (DNN)-based system is also presented. Numerical results show that the Transformer-based coded OFDM system outperforms both the DNN-based and the conventional system.

10.
Am J Transplant ; 22(9): 2158-2168, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607817

RESUMEN

The accumulation of senescent cells is an important contributor to kidney aging, chronic renal disease, and poor outcome after kidney transplantation. Approaches to eliminate senescent cells with senolytic compounds have been proposed as novel strategies to improve marginal organs. While most existing senolytics induce senescent cell clearance by apoptosis, we observed that ferroptosis, an iron-catalyzed subtype of regulated necrosis, might serve as an alternative way to ablate senescent cells. We found that murine kidney tubular epithelial cells became sensitized to ferroptosis when turning senescent. This was linked to increased expression of pro-ferroptotic lipoxygenase-5 and reduced expression of anti-ferroptotic glutathione peroxidase 4 (GPX4). In tissue slice cultures from aged kidneys low dose application of the ferroptosis-inducer RSL3 selectively eliminated senescent cells while leaving healthy tubular cells unaffected. Similar results were seen in a transplantation model, in which RSL3 reduced the senescent cell burden of aged donor kidneys and caused a reduction of damage and inflammatory cell infiltration during the early post-transplantation period. In summary, these data reveal an increased susceptibility of senescent tubular cells to ferroptosis with the potential to be exploited for selective reduction of renal senescence in aged kidney transplants.


Asunto(s)
Ferroptosis , Envejecimiento , Animales , Apoptosis , Células Epiteliales , Ratones
11.
Pharm Res ; 39(1): 41-56, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35044591

RESUMEN

PURPOSE: This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. METHODS: The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. RESULTS: Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. CONCLUSIONS: Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.


Asunto(s)
Fibrinólisis , Activador de Tejido Plasminógeno , Fibrinolíticos/farmacología , Nanomedicina , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico
12.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362059

RESUMEN

Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.


Asunto(s)
Lesión Renal Aguda , Hemoglobinas , Trasplante de Pulmón , Daño por Reperfusión , Animales , Ratones , Lesión Renal Aguda/diagnóstico , Creatinina/química , Haptoglobinas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Trasplante de Pulmón/efectos adversos , Reperfusión/efectos adversos , Daño por Reperfusión/metabolismo
13.
FASEB J ; 34(12): 16307-16318, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33089923

RESUMEN

Postischemic acute kidney injury (AKI) is a common clinical complication and often fatal, with no effective treatment available. Little is known about the role of leukocytes trapped in renal vessels during ischemia-reperfusion injury (IRI) in the postischemic AKI. We designed a new animal model in rats with preforming renal artery lavage prior to IRI to investigate the effect of diminishing the residual circulating leukocytes on kidney damage and inflammation. Moreover, the functional changes of macrophages in hypoxia reoxygenation condition were also analyzed. We found pre-ischemic renal lavage significantly decreased the serum creatinine and blood urea nitrogen levels, and downregulated the mRNA and protein expressions in kidneys and urinary secretion of kidney injury molecule-1 of rats after IRI. The renal pathological damage caused by IRI was also ameliorated by pre-ischemic renal lavage, as evidenced by fewer cast formation, diminished morphological signs of AKI in the tissue at 24 hours after IRI. Pre-ischemic renal lavage reduced the numbers of infiltrating CD68+ macrophages and MPO+ neutrophils. The mRNA expression of pro-inflammatory mediator in IRI kidneys and the levels of pro-inflammatory cytokines in circulatory system and urine were also reduced due to pre-ischemic lavage. Compared with nontreated rats with IRI, pre-ischemic renal lavage significantly reduced the phosphorylation levels of ERK and p65 subunit of NF-κB in the kidney after IRI. In addition, we found hypoxia/reoxygenation could promote the expression of pro-inflammatory mediators and inhibit the expression of anti-inflammatory factors by regulating ERK/NF-κB signaling pathway. Thus, pre-ischemic renal lavage could clearly reduce the renal damage after IRI by attenuating inflammation, and macrophages trapped in renal vessels during IRI could be important pathogenic factors driving tissue injury.


Asunto(s)
Lesión Renal Aguda/patología , Inflamación/patología , Riñón/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Línea Celular , Creatinina/metabolismo , Inflamación/metabolismo , Riñón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Arteria Renal/metabolismo , Arteria Renal/patología , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología
14.
Am J Physiol Renal Physiol ; 319(4): F563-F570, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32799675

RESUMEN

Acute kidney injury (AKI) frequently complicates major surgery and can be associated with hypertension and progress to chronic kidney disease, but reports on blood pressure normalization in AKI are conflicting. In the present study, we investigated the effects of an angiotensin-converting enzyme inhibitor, enalapril, and a soluble epoxide hydrolase inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), on renal inflammation, fibrosis, and glomerulosclerosis in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. Male CD1 mice underwent unilateral IRI for 35 min. Blood pressure was measured by tail cuff, and mesangial matrix expansion was quantified on methenamine silver-stained sections. Renal perfusion was assessed by functional MRI in vehicle- and TPPU-treated mice. Immunohistochemistry was performed to study the severity of AKI and inflammation. Leukocyte subsets were analyzed by flow cytometry, and proinflammatory cytokines were analyzed by quantitative PCR. Plasma and tissue levels of TPPU and lipid mediators were analyzed by liquid chromatography mass spectrometry. IRI resulted in a blood pressure increase of 20 mmHg in the vehicle-treated group. TPPU and enalapril normalized blood pressure and reduced mesangial matrix expansion. However, inflammation and progressive renal fibrosis were severe in all groups. TPPU further reduced renal perfusion on days 1 and 14. In conclusion, early antihypertensive treatment worsened renal outcome after AKI by further reducing renal perfusion despite reduced glomerulosclerosis.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glomerulonefritis/prevención & control , Hipertensión/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Daño por Reperfusión/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antihipertensivos/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enalapril/farmacología , Inhibidores Enzimáticos/toxicidad , Epóxido Hidrolasas/antagonistas & inhibidores , Fibrosis , Mesangio Glomerular/efectos de los fármacos , Mesangio Glomerular/patología , Mesangio Glomerular/fisiopatología , Glomerulonefritis/etiología , Glomerulonefritis/patología , Glomerulonefritis/fisiopatología , Hipertensión/etiología , Hipertensión/fisiopatología , Masculino , Ratones , Compuestos de Fenilurea/toxicidad , Piperidinas/toxicidad , Daño por Reperfusión/complicaciones , Daño por Reperfusión/fisiopatología
15.
Prostaglandins Other Lipid Mediat ; 146: 106386, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31698142

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is an important complication after major surgery and solid organ transplantation. Here, we present a dietary omega-3 polyunsaturated fatty acid (n3-PUFA) supplementation study to investigate whether pre-treatment can reduce ischemia induced AKI in mice. METHODS: Male 12-14 week old C57BL/6 J mice received a linoleic acid rich sunflower oil based standard diet containing 10 % fat (STD) or the same diet enriched with n3-PUFA (containing 1 % EPA and 1 % DHA) (STD + n3). After 14 days of feeding bilateral 30 min renal ischemia reperfusion injury (IRI) was conducted to induce AKI and mice were sacrificed at 24 h. Serum creatinine and blood urea nitrogen (BUN) as well as liver enzyme elevation were measured. Kidney damage was analyzed by histology and immunohistochemistry. Furthermore, pro-inflammatory cytokines (IL-6, MCP-1) were determined by qPCR. FA and oxylipin pattern were quantified in blood and kidneys by GC-FID and LC-MS/MS, respectively. RESULTS: n3-PUFA supplementation prior to renal IRI increased systemic and renal levels of n3-PUFA. Consistently, eicosanoids and other oxylipins derived from n3-PUFA including precursors of specialized pro-resolving mediators were elevated while n6-PUFA derived mediators such as pro-inflammatory prostaglandins were decreased. Feeding of n3-PUFA did not attenuate renal function impairment, morphological renal damage and inflammation characterized by IL-6 and MCP-1 elevation or neutrophil infiltration. However, the tubular transport marker alpha-1 microglobulin (A1M) was significantly higher expressed in proximal tubular epithelial cells of STD + n3 compared to STD fed mice. This indicates a better integrity of proximal tubular epithelial cells and thus significant protection of tubular function. In addition, heme oxygenase-1 (HO-1) which protects tubular function was also up-regulated in the treatment group receiving n3-PUFA supplemented chow. DISCUSSION: We showed that n3-PUFA pre-treatment did not affect overall renal function or renal inflammation in a mouse model of moderate ischemia induced AKI, but tubular transport was improved. In conclusion, dietary n3-PUFA supplementation altered the oxylipin levels significantly but did not protect from renal function deterioration or attenuate ischemia induced renal inflammation.


Asunto(s)
Lesión Renal Aguda , Ácidos Grasos Omega-3/farmacología , Isquemia , Túbulos Renales , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Isquemia/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Ratones , Ratones Transgénicos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
16.
J Chem Phys ; 152(20): 204307, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486688

RESUMEN

Symmetry adaptation is crucial in representing a permutationally invariant potential energy surface (PES). Due to the rapid increase in computational time with respect to the molecular size, as well as the reliance on the algebra software, the previous neural network (NN) fitting with inputs of fundamental invariants (FIs) has practical limits. Here, we report an improved and efficient generation scheme of FIs based on the computational invariant theory and parallel program, which can be readily used as the input vector of NNs in fitting high-dimensional PESs with permutation symmetry. The newly developed method significantly reduces the evaluation time of FIs, thereby extending the FI-NN method for constructing highly accurate PESs to larger systems beyond five atoms. Because of the minimum size of invariants used in the inputs of the NN, the NN structure can be very flexible for FI-NN, which leads to small fitting errors. The resulting FI-NN PES is much faster on evaluating than the corresponding permutationally invariant polynomial-NN PES.

17.
Pestic Biochem Physiol ; 162: 69-77, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31836057

RESUMEN

Endophytic bacteria are potential biocontrol agents for the control of fungal diseases. Here, an endophyte strain, B21, was isolated from Osmanthus fragrans Lour. fruits and identified as Bacillus safensis by analysis of its 16S rDNA gene sequence and its biochemical and physiological characteristics. The culture filtrate showed antifungal activity against Magnaporthe oryzae, which causes rice blast disease, and the IC50 of the methanol extract was 15.56 µg/mL, which was significantly lower than that of carbendazim (25.16 µg/mL). The antifungal activity of the methanol extract was stable at a wide range of pH values (1-9) and temperatures (40-100 °C). Two antifungal compounds were isolated by organic extraction, silica gel column chromatography and high-performance liquid chromatography (HPLC). Based on electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectrometry (NMR) analyses, the structures of the antifungal compounds were identified as iturin A2 and iturin A6. Additionally, the hyphae treated with iturin (iturin A2 or iturin A6) could be stained with the fluorescent dye propidium iodide (PI), indicating that these two compounds inhibited the growth of hyphae by changing the hyphal membrane permeability. In field experiments, spray treatment with fermentation broth resulted in a lower disease index than treatment with carbendazim, as did the culture filtrate. The results suggest that strain B21 and its bioactive compounds have the potential to be developed into a biopesticide for the biocontrol of rice blast.


Asunto(s)
Bacillus , Oryza , Antifúngicos , Agentes de Control Biológico , Enfermedades de las Plantas
18.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878171

RESUMEN

With the development of commodity economy, the emergence of fake and shoddy products has seriously harmed the interests of consumers and enterprises. To tackle this challenge, customized 2D barcode is proposed to satisfy the requirements of the enterprise anti-counterfeiting certification. Based on information hiding technology, the proposed approach can solve these challenging problems and provide a low-cost, difficult to forge, and easy to identify solution, while achieving the function of conventional 2D barcodes. By weighting between the perceptual quality and decoding robustness in sensing recognition, the customized 2D barcode can maintain a better aesthetic appearance for anti-counterfeiting and achieve fast encoding. A new picture-embedding scheme was designed to consider 2D barcode, within a unit image block as a basic encoding unit, where the 2D barcode finder patterns were embedded after encoding. Experimental results demonstrated that the proposed customized barcode could provide better encoding characteristics, while maintaining better decoding robustness than several state-of-the-art methods. Additionally, as a closed source 2D barcode that could be visually anti-counterfeit, the customized 2D barcode could effectively prevent counterfeiting that replicate physical labels. Benefitting from the high-security, high information capacity, and low-cost, the proposed customized 2D barcode with sensing recognition scheme provide a highly practical, valuable in terms of marketing, and anti-counterfeiting traceable solution for future smart IoT applications.

19.
Prostaglandins Other Lipid Mediat ; 144: 106334, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31009766

RESUMEN

In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cis-epoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.


Asunto(s)
Biomarcadores/metabolismo , Isoprostanos/biosíntesis , Estrés Oxidativo , Ácidos Grasos trans/biosíntesis , Animales , Caenorhabditis elegans , Riñón/lesiones , Masculino , Ratones , Daño por Reperfusión/metabolismo
20.
Phys Chem Chem Phys ; 21(3): 1471-1477, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30607404

RESUMEN

The skin surface, our first barrier against the external environment, is covered by the sebum oil, a lipid film composed of sebaceous and epidermal lipids, which is important in the regulation of the hydration level of our skin. Here, we investigate the pathways leading to the transfer of epidermal lipids from the skin lipid bilayer to the sebum. We show that the sebum triglycerides, a major component of sebum, interact strongly with the epidermal lipids and extract them from the bilayer. Using microsecond time scale molecular dynamics simulations, we identify and quantify the free energy associated with the skin lipid extraction process.


Asunto(s)
Epidermis/química , Membrana Dobles de Lípidos/química , Sebo/química , Triglicéridos/química , Ceramidas/química , Colesterol/química , Ácidos Grasos/química , Simulación de Dinámica Molecular , Extracción en Fase Sólida , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA