Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39358050

RESUMEN

Emerging evidence links type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), with brain insulin resistance (BIR) as a key factor. In a recent study, Lanzillotta et al. reveal that reduced biliverdin reductase-A (BVR-A) impairs glycogen synthase kinase 3ß (GSK3ß) phosphorylation, causing mitochondrial dysfunction and exacerbating brain insulin resistance in the progression of both T2DM and AD.

2.
Proc Natl Acad Sci U S A ; 120(21): e2220684120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186836

RESUMEN

Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aß plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aß uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aß uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Transgénicos , Fenotipo , Modelos Animales de Enfermedad
3.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502309

RESUMEN

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Asunto(s)
Navegación Espacial , Ratas , Animales , Interneuronas , Transmisión Sináptica , Núcleos Vestibulares/metabolismo , Neuronas GABAérgicas
4.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G291-G309, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252699

RESUMEN

Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Carcinoma Hepatocelular/patología , Proglumida/farmacología , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Fibrosis , Células Madre/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Colecistoquinina/metabolismo , Microambiente Tumoral
5.
Anal Chem ; 96(10): 4129-4137, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469639

RESUMEN

Long-term continuous imaging of endogenous HClO burst is of great importance for the elucidation of various physiological or pathological processes. However, most of the currently reported HClO probes have failed to achieve this goal due to their insufficient photobleaching resistance under a laser source. Herein, a highly stable ratiometric probe, HFTC-HClO 1, which is capable of continuously monitoring endogenous HClO burst over a long period of time, has been judiciously developed. Briefly, the de novo development of HFTC-HClO 1 mainly involved three main steps: (1) novel coumarins (HFTC 1-5) were designed and synthesized; (2) the most stable scaffold, HFTC 3, was selected through dye screening and cell imaging validation; and (3) based on HFTC 3, three candidate HClO probes were constructed, and HFTC-HClO 1 was finally selected due to its superior sensing properties toward HClO. Furthermore, HFTC-HClO 1 can quantitatively measure HClO levels in various real samples with excellent recovery (>90.4%), and the use of HFTC-HClO 1-coated test strips for qualitative analysis of HClO in real samples was also achieved. In addition, the application of HFTC-HClO 1 for long-term continuous monitoring of intracellular HClO burst was successfully demonstrated. Significantly, HFTC-HClO 1 was able to visualize HClO generated in the rheumatoid arthritis mouse model.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Ratones , Animales , Ácido Hipocloroso/análisis , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Cumarinas
6.
Cardiovasc Diabetol ; 23(1): 131, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637777

RESUMEN

BACKGROUND: Serum uric acid (SUA) is an important pathogenetic and prognostic factor for heart failure (HF). Gender differences are apparent in HF. Furthermore, gender differences also exist in the association between SUA and prognosis in various cardiovascular diseases. However, the gender difference for SUA in the prediction of long-term prognosis in HF is still ambiguous. METHODS: A total of 1593 HF patients (897 men, 696 women) from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 cycle were enrolled in our final analysis. Participants were categorized according to gender-specific SUA tertile. We assessed the association between SUA and long-term prognosis of HF patients, defined as all-cause mortality and cardiovascular mortality, in different genders via Kaplan-Meier curve analysis, Cox proportional hazard model, and Fine-Gray competing risk model. The restricted cubic spline (RCS) was performed to investigate the dose-response relationship between SUA and outcomes. RESULTS: Gender differences exist in demographic characteristics, clinical parameters, laboratory tests, and medication of HF patients. After a median follow-up of 127 months (95% CI 120-134 months), there were 853 all-cause deaths (493 events in men, 360 events in women) and 361 cardiovascular deaths (206 events in men, 155 events in women). Kaplan-Meier analysis showed that SUA had gender difference in the prediction of cardiovascular mortality (Log-rank p < 0.001, for male, Log-rank p = 0.150, for female), but not in all-cause mortality. Multivariate Cox regression analysis revealed that elevated SUA levels were associated with higher all-cause mortality and cardiovascular mortality in men (HR 1.11, 95% CI 1.05-1.18, p < 0.001, for all-cause death; HR 1.18, 95% CI 1.09-1.28, p < 0.001, for cardiovascular death), but not in women (HR 1.05, 95% CI 0.98-1.12, p = 0.186, for all-cause death; HR 1.01, 95% CI 0.91-1.12, p = 0.902, for cardiovascular death). Even using non-cardiovascular death as a competitive risk, adjusted Fine-Gray model also illustrated that SUA was an independent predictor of cardiovascular death in men (SHR 1.17, 95% CI 1.08-1.27, p < 0.001), but not in women (SHR 0.98, 95% CI 0.87 - 1.10, p = 0.690). CONCLUSIONS: Gender differences in the association between SUA and long-term prognosis of HF existed. SUA was an independent prognostic predictor for long-term outcomes of HF in men, but not in women.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Masculino , Femenino , Ácido Úrico , Factores Sexuales , Encuestas Nutricionales , Factores de Riesgo , Pronóstico , Insuficiencia Cardíaca/tratamiento farmacológico
7.
Plant Cell ; 33(1): 66-84, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33751089

RESUMEN

After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Cigoto/metabolismo
8.
Biochem Genet ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641699

RESUMEN

SET domain-containing 5 (SETD5), a member of protein lysine methyltransferase family, is expressed in multiple cancers, making it potential therapeutic targets. However, the role of SETD5 in colorectal cancer remains largely unknown. The expression of SETD5 in the 30 pairs colorectal cancer tissues samples and cell lines were determined by qRT-PCR. The functions of SETD5 was detected by knocked-down or overexpression in colorectal cancer cell lines SW480 and HCT116 cells. Cell proliferative activity, cell death, and stemness characteristics were assessed. BEZ235, a PI3K/AKT/mTOR pathway inhibitor, was used to perform rescue experiment to analyze whether SETD5 exerted its effects through activating PI3K/AKT/mTOR pathway. SETD5 was substantially upregulated in colorectal cancer, and correlated to metastasis and clinical stage of patients. Knockdown of SETD5 inhibited SW480 and HCT116 cell growth, as evidenced by the inhibition of cell viability and clone-forming. Moreover, Knockdown of SETD5 suppressed the capability of tumor sphere formation of SW480 and HCT116 cells, and reduced the expression of stemness-related proteins Nanog and Sox2. Further western blot analysis revealed that SETD5 knockdown inhibited the phosphorylation of proteins associated with the PI3K/AKT/mTOR pathway. In contrast, overexpression of SETD5 exerted the opposite effects. Mechanistically, by blocking PI3K/AKT/mTOR pathway with BEZ235, the effects of SETD5 overexpression on cell viability and Nanog and Sox2 protein expression were reversed. Our results substantiated that SETD5 functioned as an oncogene by promoting cell growth and stemness in colorectal cancer cells through activating the PI3K/AKT/mTOR signaling pathway.

9.
Anal Chem ; 95(6): 3325-3331, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716181

RESUMEN

Rhodamines have emerged as a useful class of dye for bioimaging. However, intrinsic issues such as short emission wavelengths and small Stokes shifts limit their widespread applications in living systems. By taking advantage of the homoadamantane-fused tetrahydroquinoxaline (HFT) moiety as an electron donor, we developed a new class of asymmetric NIR rhodamine dyes, NNR1-7. These new dyes retained ideal photophysical properties from the classical rhodamine scaffold and showed large Stokes shifts (>80 nm) with improved chemo/photostability. We found that NNR1-7 specifically target cellular mitochondria with superior photobleaching resistance and improved tolerance for cell fixation compared to commercial mitochondria trackers. Based on NNR4, a novel NIR pH sensor (NNR4M) was also constructed and successfully applied for real-time monitoring of variations in lysosomal pH. We envision this design strategy would find broad applications in the development of highly stable NIR dyes with a large Stokes shift.


Asunto(s)
Electrones , Colorantes Fluorescentes , Rodaminas/química , Colorantes Fluorescentes/química , Lisosomas
10.
BMC Plant Biol ; 23(1): 650, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102566

RESUMEN

BACKGROUND: The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT: In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS: Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.


Asunto(s)
Oryza , Oryza/metabolismo , Inflorescencia/genética , Citocininas/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA