Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Biophys Res Commun ; 721: 150144, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-38781661

RESUMEN

Cell polarization can be guided by substrate topology through space constraints and adhesion induction, which are part of cellular mechanosensing pathways. Here, we demonstrated that protein tyrosine phosphatase Shp2 plays a crucial role in mediating the response of cells to substrate spatial cues. When compared to cells spreading on surfaces coated uniformly with fibronectin (FN), cells attached to 10 µm-width FN-strip micropattern (MP), which provides spatial cues for uniaxial spreading, exhibited elongated focal adhesions (FAs) and aligned stress fibers in the direction of the MP. As a result of uniaxial cell spreading, nuclei became elongated, dependent on ROCK-mediated actomyosin contractility. Additionally, intracellular viscoelasticity also increased. Shp2-deficient cells did not display elongated FAs mediated by MP, well-aligned stress fibers, or changes in nuclear shape and intracellular viscoelasticity. Overall, our data suggest that Shp2 is involved in regulating FAs and the actin cytoskeleton to modulate nuclear shape and intracellular physical properties in response to substrate spatial cues.


Asunto(s)
Núcleo Celular , Elasticidad , Adhesiones Focales , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Viscosidad , Núcleo Celular/metabolismo , Animales , Adhesiones Focales/metabolismo , Ratones , Fibronectinas/metabolismo , Humanos , Adhesión Celular , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Mecanotransducción Celular/fisiología , Quinasas Asociadas a rho/metabolismo
2.
J Virol ; 96(16): e0075522, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35914074

RESUMEN

Primary effusion lymphoma (PEL) is a fatal B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Inducing KSHV lytic replication that causes the death of host cells is an attractive treatment approach for PE; however, combination therapy inhibiting viral production is frequently needed to improve its outcomes. We have previously shown that the KSHV lytic protein K-bZIP can SUMOylate histone lysine demethylase 4A (KDM4A) at lysine 471 (K471) and this SUMOylation is required for virus production upon KSHV reactivation. Here, we demonstrate that SUMOylation of KDM4A orchestrates PEL cell survival, a major challenge for the success of PEL treatment; and cell movement and angiogenesis, the cell functions contributing to PEL cell extravasation and dissemination. Furthermore, integrated ChIP-seq and RNA-seq analyses identified interleukin-10 (IL-10), an immunosuppressive cytokine, as a novel downstream target of KDM4A. We demonstrate that PEL-induced angiogenesis is dependent on IL-10. More importantly, single-cell RNA sequencing (scRNA-seq) analysis demonstrated that, at the late stage of KSHV reactivation, KDM4A determines the fates of PEL cells, as evidenced by two distinct cell populations; one with less apoptotic signaling expresses high levels of viral genes and the other is exactly opposite, while KDM4A-K417R-expressing cells contain only the apoptotic population with less viral gene expression. Consistently, KDM4A knockout significantly reduced cell viability and virus production in KSHV-reactivated PEL cells. Since inhibiting PEL extravasation and eradicating KSHV-infected PEL cells without increasing viral load provide a strong rationale for treating PEL, this study indicates targeting KDM4A as a promising therapeutic option for treating PEL. IMPORTANCE PEL is an aggressive and untreatable B-cell lymphoma caused by KSHV infection. Therefore, new therapeutic approaches for PEL need to be investigated. Since simultaneous induction of KSHV reactivation and apoptosis can directly kill PEL cells, they have been applied in the treatment of this hematologic malignancy and have made progress. Epigenetic therapy with histone deacetylase (HDAC) inhibitors has been proved to treat PEL. However, the antitumor efficacies of HDAC inhibitors are modest and new approaches are needed. Following our previous report showing that the histone lysine demethylase KDM4A and its SUMOylation are required for lytic reactivation of KSHV in PEL cells, we further investigated its cellular function. Here, we found that SUMOylation of KDM4A is required for the survival, movement, and angiogenesis of lytic KSHV-infected PEL cells. Together with our previous finding showing the importance of KDM4A SUMOylation in viral production, KDM4A can be a potential therapeutic target for PEL.


Asunto(s)
Herpesvirus Humano 8 , Histona Demetilasas con Dominio de Jumonji/metabolismo , Linfoma de Efusión Primaria , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/fisiología , Histona Demetilasas/genética , Humanos , Interleucina-10/metabolismo , Activación Viral , Replicación Viral
3.
J Cell Mol Med ; 22(8): 3837-3846, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29726584

RESUMEN

The biological impact and signalling of epithelial-mesenchymal transition (EMT) during cancer metastasis has been established. However, the changes in biophysical properties of cancer cells undergoing EMT remain elusive. Here, we measured, via video particle tracking microrheology, the intracellular stiffness of head and neck cancer cell lines with distinct EMT phenotypes. We also examined cells migration and invasiveness in different extracellular matrix architectures and EMT-related signalling in these cell lines. Our results show that when cells were cultivated in three-dimensional (3D) environments, the differences in cell morphology, migration speed, invasion capability and intracellular stiffness were more pronounced among different head and neck cancer cell lines with distinct EMT phenotypes than those cultivated in traditional plastic dishes and/or seated on top of a thick layer of collagen. An inverse correlation between intracellular stiffness and invasiveness in 3D culture was revealed. Knock-down of the EMT regulator Twist1 or Snail or inhibition of Rac1 which is a downstream GTPase of Twist1 increased intracellular stiffness. These results indicate that the EMT regulators, Twist1 and Snail and the mediated signals play a critical role in reducing intracellular stiffness and enhancing cell migration in EMT to promote cancer cells invasion.

4.
J Cell Mol Med ; 19(5): 934-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25683605

RESUMEN

Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, ß-PIX (PAK-interacting exchange factor-ß). In H1299 cells, ß-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, ß-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of ß-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of ß-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Citoplasma/metabolismo , Adhesiones Focales/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Línea Celular Tumoral , Polaridad Celular , Regulación hacia Abajo , Elasticidad , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Microscopía Confocal , Miosina Tipo II/metabolismo , Interferencia de ARN , Factores de Intercambio de Guanina Nucleótido Rho/genética , Fibras de Estrés/metabolismo , Imagen de Lapso de Tiempo/métodos , Viscosidad
5.
Mater Today Bio ; 26: 101058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38681057

RESUMEN

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.

6.
J Cachexia Sarcopenia Muscle ; 15(5): 1708-1721, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38926763

RESUMEN

BACKGROUND: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS: Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS: The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.


Asunto(s)
Diferenciación Celular , Péptido 1 Similar al Glucagón , Sarcopenia , Sarcopenia/metabolismo , Sarcopenia/sangre , Humanos , Péptido 1 Similar al Glucagón/sangre , Péptido 1 Similar al Glucagón/metabolismo , Masculino , Femenino , Anciano , Desarrollo de Músculos , Persona de Mediana Edad , Músculo Esquelético/metabolismo
7.
Biomaterials ; 308: 122551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593710

RESUMEN

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Asunto(s)
Cinesinas , Regeneración , Sarcopenia , Animales , Cinesinas/metabolismo , Ratones , Sarcopenia/metabolismo , Sarcopenia/patología , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Desarrollo de Músculos , Masculino , Transportador de Glucosa de Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Mitocondrias/metabolismo , Fenómenos Biomecánicos , Glucosa/metabolismo
8.
Int J Biochem Cell Biol ; 176: 106662, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39293559

RESUMEN

Dysregulated protein homeostasis, characterized by abnormal protein accumulation and aggregation, is a key contributor to the progression of neurodegenerative disorders such as Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Previous studies have identified PIAS1 gene variants in patients with late-onset SCA3 and Huntington's disease. This study aims to elucidate the role of PIAS1 and its S510G variant in modulating the pathogenic mechanisms of SCA3. Through in vitro biochemical analyses and in vivo assays, we demonstrate that PIAS1 stabilizes both wild-type and mutant ataxin-3 (ATXN3). The PIAS1 S510G variant, however, selectively reduces the stability and SUMOylation of mutant ATXN3, thereby decreasing its aggregation and toxicity while maintaining the stability of wild-type ATXN3. This effect is mediated by a weakened interaction with the SUMO-conjugating enzyme UBC9 in the presence of mutant ATXN3. In Drosophila models, downregulation of dPIAS1 resulted in reduced levels of mutant ATXN3 and alleviated associated phenotypes, including retinal degeneration and motor dysfunction. Our findings suggest that the PIAS1 S510G variant acts as a genetic modifier of SCA3, highlighting the potential of targeting SUMOylation as a therapeutic strategy for this disease.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , Proteínas Inhibidoras de STAT Activados , Proteostasis , Sumoilación , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/metabolismo , Animales , Proteostasis/genética , Mutación , Células HEK293 , Drosophila melanogaster/genética , Proteínas Represoras , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Enzimas Ubiquitina-Conjugadoras
9.
iScience ; 26(6): 106927, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37305698

RESUMEN

The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.

10.
Acta Biomater ; 163: 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36328121

RESUMEN

Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.


Asunto(s)
Actinas , Células Madre Mesenquimatosas , Actinas/metabolismo , Actomiosina/metabolismo , Mecanotransducción Celular , Forma de la Célula , Osteogénesis , Diferenciación Celular , Factores de Transcripción/metabolismo
11.
Front Cell Dev Biol ; 10: 809738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265612

RESUMEN

Up to 50% of head and neck squamous cell carcinoma (HNSCC) patients have lymph node (LN) metastasis, resulting in poor survival rate. Numerous studies have supported the notion that the alterations of gene expression and mechanical properties of cancer cells play an important role in cancer metastasis. However, which genes and how they regulate the biomechanical properties of HNSCC cells to promote LN metastasis remains elusive. In this study, we used an LN-metastatic mouse model in vivo to generate an LN-metastatic head and neck squamous cell carcinoma cell line and compared the differences in the biomolecular and biomechanical properties of LN-metastatic and non-metastatic cells. Our results showed that LN-metastatic cells had a higher level of Snail expression compared to non-LN-metastatic cells. The higher Snail expression promoted the cellular invasion capability in confined environments, mainly by increasing the longitudinal strain of the cell nuclei, which could be attributed to the stronger cell traction force and softer nuclear stiffness. These two biomechanical changes were correlated, respectively, to a larger amount of focal adhesion and less amount of nuclear lamins. Taken together, our works revealed not only the biomechanical profiles of LN-metastatic cells but also the corresponding biomolecular expressions to pinpoint the key process in LN metastasis.

12.
Opt Express ; 19(9): 8847-54, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643138

RESUMEN

We used oscillatory optical tweezers to investigate the microrheological properties of Sodium polystyrene sulfonate (NaPSS; Mw = 70 kDa) polymer solutions with different concentrations from 0.001 mM to 10 mM in terms of elastic modulus G'(ω) and loss modulus G"(ω) as a function of angular frequency (ω) in the range of 6 rad/s to 6000 rad/s. The viscoelastic properties (including zero-shear-rate viscosity, crossing frequency and transition frequency) as a function of polymer concentration, deduced from our primary data, reveal the subtle structural changes in the polymer solutions as the polymer concentration increases from dilute to semi-dilute regimes, passing through the critical micelle formation concentration and the polymer overlapping concentration. The experimental results are consistent with the Maxwell model in some regime, and with the Rouse model in other, indicating the transient network character and the micelles formation in different regimes.


Asunto(s)
Ensayo de Materiales/métodos , Pinzas Ópticas , Poliestirenos/química , Reología/métodos , Resistencia al Corte , Viscosidad
13.
Cancers (Basel) ; 13(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921319

RESUMEN

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial-mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.

14.
Cell Death Discov ; 7(1): 35, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597503

RESUMEN

During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin ß1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin ß1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.

15.
ACS Appl Bio Mater ; 3(9): 6419-6429, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021773

RESUMEN

Cancer metastasis involves not only cancer cells but also fibroblasts and the surrounding collagen matrices. Previous studies have reported that in tumor tissues, cancer cells and fibroblasts surrounded by dense collagen are often associated with a high risk of cancer metastasis. However, the mechanism of the interaction between the cancer cells, fibroblasts, and the surrounding collagen matrices in vivo to promote cancer cell invasion in different collagen concentration environments remains unclear. To address this issue, we cocultured head and neck squamous cell carcinoma (OECM-1 cells) and human dermal fibroblasts (HDFs) to form 3D spheroids, embedded in collagen gel with different concentrations to delineate their roles and their interactions in cancer cell invasion. We showed that in single-species spheroids, the OECM-1 cells could not remodel the high-concentration (8 mg/mL) collagen matrices to invade into the surrounding collagen. In contrast, in the coculture spheroids, the HDF cells could remodel the collagen matrices, via MMP-meditated collagen degradation, to increase the invasion capability of OECM-1 cells. In the case of low-concentration (2 mg/mL) collagen matrices, both HDF and OECM-1 cells in the coculture spheroids could independently invade into the surrounding collagen via force remodeling of collagen. Our results revealed that the assistance of HDFs was critical for OECM-1 cell invasion into the surrounding extracellular matrix with high collagen concentration, high storage modulus, and small pore sizes. These insightful results shed light on the possible optimal invasion strategy of cancer tumors in vivo in response to different storage moduli of surrounding collagen matrices.

16.
ACS Appl Mater Interfaces ; 12(20): 22399-22409, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32323968

RESUMEN

Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.


Asunto(s)
Adhesión Celular/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Anisotropía , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Oro/química , Humanos , Integrinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Propiedades de Superficie , Titanio/química
17.
Nat Commun ; 11(1): 1229, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144274

RESUMEN

Liquid-liquid phase separation (LLPS) explains many intracellular activities, but its role in extracellular functions has not been studied to the same extent. Here we report how LLPS mediates the extracellular function of galectin-3, the only monomeric member of the galectin family. The mechanism through which galectin-3 agglutinates (acting as a "bridge" to aggregate glycosylated molecules) is largely unknown. Our data show that its N-terminal domain (NTD) undergoes LLPS driven by interactions between its aromatic residues (two tryptophans and 10 tyrosines). Our lipopolysaccharide (LPS) micelle model shows that the NTDs form multiple weak interactions to other galectin-3 and then aggregate LPS micelles. Aggregation is reversed when interactions between the LPS and the carbohydrate recognition domains are blocked by lactose. The proposed mechanism explains many of galectin-3's functions and suggests that the aromatic residues in the NTD are interesting drug design targets.


Asunto(s)
Aglutinación , Galectina 3/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Agregado de Proteínas , Proteínas Sanguíneas , Galectinas , Glicosilación , Lipopolisacáridos/metabolismo , Micelas , Dominios Proteicos
18.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737247

RESUMEN

Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Centrosoma/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Adhesión Celular/fisiología , Línea Celular , Adhesiones Focales/metabolismo , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudópodos/metabolismo , Epitelio Pigmentado de la Retina/citología , Transfección
19.
Acta Biomater ; 84: 280-292, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30500449

RESUMEN

Mechanical remodeling of stromal collagen, such as reorientation and deformation of collagen matrix, generated by invading cancer cells, plays an important role in the progression of cancer invasion and metastasis. In this study, we applied time-lapse microscopy in conjunction with particle displacement mapping to analyze time-dependent contraction and expansion deformations of collagen surrounding individual spheroids of head and neck squamous cell carcinoma cells (HNSCC), OECM-1 & SAS, as the cancer cells detached from the spheroid and invaded into the surrounding 3D collagen matrix. Our results revealed that highly-invasive HNSCC spheroids, stimulated by epidermal growth factor (EGF), generated a strong contraction deformation of the surrounding collagen in the very early stage, and aligned the collagen fibers radially with respect to the center of the spheroid. This initial collagen contraction deformation generated by the HNSCC spheroid bears a strong positive correlation with the overall extent of subsequent cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids. STATEMENT OF SIGNIFICANCE: Mechanical remodeling of extracellular matrix (ECM) generated by cancer cells plays an important role in the progression of cancer invasion and metastasis. We observed that the extent of initial contraction deformation of collagen surrounding a head and neck squamous cell carcinoma cell (HNSCC) spheroid played an indispensable role in early stage to promote cancer cells invasion into the surrounding ECM. Our results revealed that more invasive HNSCC spheroids generated a larger extent of initial collagen contraction to align the surrounding collagen and to promote cancer cells invasion. This initial collagen contraction deformation generated by the HNSCC spheroids bears a strong positive correlation with the overall extent of cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas de Neoplasias/metabolismo , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Colágeno , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Invasividad Neoplásica , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
20.
J Chin Med Assoc ; 81(5): 475-481, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29133160

RESUMEN

BACKGROUND: In endurance sports, stress, dehydration and release of chemical factors have been associated with red blood cell (RBC) alterations of structure and function, which may contribute to sports anemia, a well-observed phenomenon during long-distance running. Until now, the investigation of the changes of viscoelastic properties of RBC membrane, a decisive factor of RBC deformability to avoid hemolysis, is lacking, especially in an Oriental population. METHODS: nineteen runners were prospectively recruited into our study. Hematological parameters were analyzed before and immediately after the 2015 Taipei 24H Ultra-Marathon Festival, Taiwan. Video particle tracking microrheology was used to determine viscoelastic properties of each RBC sample by calculating the dynamic elastic modulus G'(f) and the viscous modulus G″(f) at frequency f = 20 Hz. RESULTS: Haptoglobin, RBC count, hemoglobin, hematocrit, mean cell hemoglobin, plasma free hemoglobin and unsaturated iron-binding capacity values of the recruited runners showed a statistically significant drop in the post-race values. Blood concentration of reticulocyte and ferritin were significantly higher at post-race compared with pre-race. 15 out of the 19 runners had a concurrent change in the elastic and the viscous moduli of their RBCs. Changes in the elastic and the viscous moduli were correlated with changes in the RBC count, hemoglobin and hematocrit. CONCLUSION: Viscoelasticity properties, the elastic modulus G'(f) and the viscous modulus G″(f) of RBCs are associated with endurance exercise-induced anemia.


Asunto(s)
Anemia/etiología , Viscosidad Sanguínea , Eritrocitos/fisiología , Carrera , Adulto , Anemia/sangre , Elasticidad , Hematócrito , Hemoglobinas/análisis , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA