Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 248: 114291, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395652

RESUMEN

Deoxynivalenol (DON) is universally detected trichothecene in most cereal commodities, which is considered as a major hazardous material for human and animal health. Intestine is the most vulnerable organ with higher concentration of DON than other organs, owing to the first defense barrier function to exogenous substances. However, the underling mechanisms about DON-induced intestinal toxicity remain poorly understood. Here, DON poisoning models of IPEC-J2 cells was established to explore adverse effect and the potential mechanism of DON-induced enterotoxicity. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Intestinal epithelial barrier injury was caused by DON with increasing LDH release, decreasing cell viability as well decreasing tight junction protein expressions (Occludin, N-Cad, ZO-1, Claudin-1 and Claudin-3). Moreover, DON caused mitochondrial dysfunction by opening mitochondrial permeability transition pore and eliminating mitochondrial membrane potential. DON exposure upregulated protein and mRNA expression of mitochondrial fission factors (Drp1, Fis1, MIEF1 and MFF) and mitophagy factors (PINK1, Parkin and LC3), downregulated mitochondrial fusion factors (Mfn1, Mfn2, except OPA1), resulting in mitochondrial dynamics imbalance and mitophagy. Overall, these findings suggested that DON induced tight junction dysfunction in IPEC-J2 cells was related to mitochondrial dynamics-mediated mitophagy.


Asunto(s)
Dinámicas Mitocondriales , Mitofagia , Humanos , Porcinos , Animales , Uniones Estrechas , Ocludina , Factores de Elongación de Péptidos , Proteínas Mitocondriales
2.
Food Chem Toxicol ; 179: 113982, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37553049

RESUMEN

The presence of anorexia in animals is the most well-known clinical symptom of T-2 toxin poisoning. T-2 toxin is the most characteristic type A toxin in the trichothecene mycotoxins. The consumption of T-2 toxin can cause anorexic response in mice, rats, rabbits, and other animals. In this review, the basic information of T-2 toxin, appetite regulation mechanism and the molecular mechanism of T-2 toxin-induced anorectic response in animals are presented and discussed. The objective of this overview is to describe the research progress of anorexia in animals produced by T-2 toxin. T-2 toxin mainly causes antifeedant reaction through four pathways: vagus nerve, gastrointestinal hormone, neurotransmitter and cytokine. This review aims to give an academic basis and useable reference for the prevention and treatment of clinical symptoms of anorexia in animals resulting from T-2 toxin.


Asunto(s)
Depresores del Apetito , Micotoxinas , Toxina T-2 , Ratones , Ratas , Animales , Conejos , Anorexia/inducido químicamente , Micotoxinas/efectos adversos , Neurotransmisores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA