Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119919, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157572

RESUMEN

To replace the obsolete ponding system, palm oil mill effluent (POME) steam reforming (SR) over net-acidic LaNiO3 and net-basic LaCoO3 were proposed as the POME primary treatments, with promising H2-rich syngas production. Herein, the long-term evaluation of POME SR was scrutinized with both catalysts under the optimal conditions (600 °C, 0.09 mL POME/min, 0.3 g catalyst, & 74-105 µm catalyst particle size) to examine the catalyst microstructure changes, transient process stability, and final effluent evaluation. Extensive characterization proved the (i) adsorption of POME vapour on catalysts before SR, (ii) deposition of carbon and minerals on spent SR catalysts, and (iii) dominance of coking deactivation over sintering deactivation at 600 °C. Despite its longer run, spent LaCoO3 (50.54 wt%) had similar carbon deposition with spent LaNiO3 (50.44 wt%), concurring with its excellent coke resistance. Spent LaCoO3 (6.12 wt%; large protruding crystals) suffered a harsher mineral deposition than spent LaNiO3 (3.71 wt%; thin film coating), confirming that lower reactivity increased residence time of reactants. Transient syngas evolution of both SR catalysts was relatively steady up to 4 h but perturbed by coking deactivation thereafter. La2O2CO3 acted as an intermediate species that hastened the coke removal via reverse Boudouard reaction upon its decarbonation. La2O2CO3 decarbonation occurred continuously in LaCoO3 system but intermittently in LaNiO3 system. LaNiO3 system only lasted for 13 h as its compact ash blocked the gas flow. LaCoO3 system lasted longer (17 h) with its porous ash, but it eventually failed because KCl crystallites blocked its active sites. Relatively, LaCoO3 system offered greater net H2 production (72.78%) and POME treatment volume (30.77%) than LaNiO3 system. SR could attain appreciable POME degradation (>97% COD, BOD5, TSS, & colour intensity). Withal, SR-treated POME should be polished to further reduce its incompliant COD and BOD5.


Asunto(s)
Compuestos de Calcio , Coque , Aceites de Plantas , Titanio , Aceite de Palma , Aceites de Plantas/química , Vapor , Lantano , Óxidos , Carbono , Residuos Industriales
2.
Environ Res ; 227: 115780, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990197

RESUMEN

Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.


Asunto(s)
Cianobacterias , Microalgas , Fermentación , Cianobacterias/metabolismo , Hidrógeno/análisis , Hidrógeno/metabolismo , Biocombustibles , Biomasa
3.
J Environ Manage ; 307: 114385, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104699

RESUMEN

The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.


Asunto(s)
Líquidos Iónicos , Lignina , Biomasa , Solventes
4.
Bioprocess Biosyst Eng ; 44(9): 1807-1818, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34009462

RESUMEN

Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.


Asunto(s)
Aceite de Coco/química , Cocos/química , Frutas/química , Ácidos Láuricos/química , Ácidos Láuricos/aislamiento & purificación
5.
J Environ Manage ; 289: 112468, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33823414

RESUMEN

A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Metanol , Biomasa , Carbono , Catálisis
6.
Environ Res ; 185: 109452, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32259725

RESUMEN

A synergistic effect of the activated limestone-based catalyst (LBC) and microwave irradiation on the transesterification of waste cooking oil (WCO) was screened using a two-level factorial design and response surface methodology. The catalyst was prepared using a wet-impregnation method and was characterised for its surface element, surface morphology, surface area and porosity. The reaction was performed in a purpose-built continuous microwave assisted reactor (CMAR), while the conversion and yield of biodiesel were measured using a gas chromatography. The results showed that the catalyst loading, methanol to oil molar ratio and the reaction time significantly affect the WCO conversion. The optimum conversion of oil to biodiesel up to 96.65% was achieved at catalyst loading of 5.47 wt%, methanol to oil molar ratio of 12.21:1 and the reaction time of 55.26 min. The application of CMAR in this work reduced the transesterification time by about 77% compared to the reaction time needed for a conventional reactor. The biodiesel produced in this work met the specification of American Society for Testing and Materials (ASTM D6751). Engine test results shows the biodiesel has a lower NOx and particulate matters emissions compared to petrodiesel.


Asunto(s)
Biocombustibles , Microondas , Biocombustibles/análisis , Catálisis , Culinaria , Esterificación , Aceites de Plantas
7.
Environ Res ; 188: 109803, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32590149

RESUMEN

In this work, the photocatalytic property of p-type CuO was tailored by creating a heterojunction with n-type CdS. The CuO/CdS nanocomposite photocatalyst was synthesized by the ultrasound-assisted-wet-impregnation method and the physicochemical and optical properties of the catalysts were evaluated by using N2 physisorption, X-Ray Diffraction (XRD),X-Ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, Transmission electron microscopy (TEM), Energy dispersive X-Ray (EDX) mapping, Field Emission Scanning Electron Microscope (FE-SEM), UV-Vis and photoluminescence spectroscopy experiments. Detailed characterization revealed the formation of a nanocomposite with a remarkable improvement in the charge carrier (electron/hole) separation. The photocatalytic degradation efficiencies of CuO and CuO/CdS were investigated for different dyes, for instance, rhodamine B (RhB), methylene blue (MLB), methyl blue (MB) and methyl orange (MO) under visible light irradiation. The obtained dye degradation efficiencies were ~93%, ~75%, ~83% and ~80%, respectively. The quantum yield for RhB degradation under visible light was 6.5 × 10-5. Reusability tests revealed that the CuO/CdS photocatalyst was recyclable up to four times. The possible mechanisms for the photocatalytic dye degradation over CuO/CdS nanocomposite were elucidated by utilizing various scavengers. Through these studies, it can be confirmed that the conduction band edges of CuO and CdS play a significant role in producing O2-. The produced O2- degraded the dye molecules in the bulk solution whereas the valence band position of CuO acted as the water oxidation site. In conclusion, the incorporation of CuO with CdS was demonstrated to be a viable strategy for the efficient photocatalytic degradation of dyes in aqueous solutions.


Asunto(s)
Cobre , Luz , Catálisis , Colorantes
8.
J Environ Manage ; 234: 404-411, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30640165

RESUMEN

Palm oil mill effluent (POME) is a serious and expensive environmental problem in Malaysia. In this paper, CaFe2O4 is introduced as a novel photocatalyst for the degradation of POME under visible light irradiation. Two synthesis routes, auto-combustion and co-precipitation, and two calcination temperatures 550 °C and 700 °C were used to produce four CaFe2O4 catalysts AC550, AC700, CP550 and CP700. CP550 exhibited the greatest photocatalytic degradation at 56% chemical-oxygen-demand (COD) removal after 8 h of irradiation which dropped to 49% after three consecutive cycles indicating reasonable conversion and high recyclability. BET analysis indicated CP550 had the highest SBET (27.28 m2/g) and pore volume (0.077 cm3/g) which dropped precipitously for CP700 upon increasing the calcination temperature to an SBET of 9.73 m2/g and pore volume of 0.025 cm3/g due to annealing which created a smoother surface area as evidenced by the SEM images. UV-Vis DRS indicated CP550 had the highest band-gap (1.52 eV) which is likely due to the presence of a highly crystalline pure CaFe2O4 phase compared to the other products which existed as a mixture of Fe oxidation states evidenced by the XRD data. The PL spectra for all catalysts indicated significantly lower recombination rate for both CP550 and CP700. Introduction of IPA into the reaction mixture to eliminate hydroxyl radicals resulted in a diminishing of COD removal from 56% to 7% proving hydroxyl radicals to be the primary reactive species responsible for photodegradation of POME.


Asunto(s)
Compuestos Férricos , Compuestos de Calcio , Catálisis , Malasia , Aceite de Palma
9.
J Environ Manage ; 249: 109384, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419674

RESUMEN

The microalgal-bacterial co-cultivation was adopted as an alternative in making microbial-based biofuel production to be more feasible in considering the economic and environmental prospects. Accordingly, the microalgal-bacterial symbiotic relationship was exploited to enhance the microbial biomass yield, while bioremediating the nitrogen-rich municipal wastewater. An optimized inoculation ratio of microalgae and activated sludge (AS:MA) was predetermined and further optimization was performed in terms of different increment ratios to enhance the bioremediation process. The nitrogen removal was found accelerating with the increase of the increment ratios of inoculated AS:MA, though all the increment ratios had recorded a near complete total nitrogen removal (94-95%). In light of treatment efficiency and lipid production, the increment ratio of 0.5 was hailed as the best microbial population size in accounting the total nitrogen removal efficiency of 94.45%, while not compromising the lipid production of 0.241 g/L. Moreover, the cultures in municipal wastewater had attained higher biomass and lipid productions of 1.42 g/L and 0.242 g/L, respectively, as compared with the synthetic wastewater which were only 1.12 g/L (biomass yield) and 0.175 g/L (lipid yield). This was possibly due to the presence of trace elements which had contributed to the increase of biomass yield; thus, higher lipid attainability from the microalgal-bacterial culture. This synergistic microalgal-bacterial approach had been proven to be effective in treating wastewater, while also producing useful biomass for eventual lipid production with comparable net energy ratio (NER) value of 0.27, obtained from the life-cycle analysis (LCA) studies. Thereby, contributing towards long-term sustainability and possible commercialization of microbial-based biofuel production.


Asunto(s)
Microalgas , Biodegradación Ambiental , Biocombustibles , Biomasa , Estudios de Factibilidad , Lípidos , Aguas Residuales
10.
J Environ Manage ; 225: 242-251, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30092551

RESUMEN

Microbial fuel cells (MFCs) are considered as promising technology to achieve simultaneous wastewater treatment and electricity generation. However, operational and technological developments are still required to make it as a sustainable technology. In the present study, response surface methodology (RSM) was used to evaluate the effects of substrate concentration, co-culture composition, pH and time on the performance of co-culture (Klebsiella variicola and Pseudomonas aeruginosa) inoculated double chamber MFC. From the statistical analysis, it can be seen that the performance of MFC was not influenced by the interaction between the initial COD and time, pH and time, pH and initial COD, time and initial COD. However, the interaction between the inoculum composition and time, pH and the inoculum composition, initial COD and inoculum composition significantly influenced the performance of MFC. Based on the RSM results, best performance (power density and COD removal efficiency) was obtained when the inoculum composition, initial COD, pH and time were about 1:1, 26.690 mg/L, 7.21 and 15.50 days, respectively. The predictions from the model were in close agreement with the experimental results suggesting that the proposed model could adequately represent the actual relationships between the independent variables generating electricity and the COD removal efficiency.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas de Cocultivo , Eliminación de Residuos Líquidos , Análisis de la Demanda Biológica de Oxígeno , Electricidad , Electrodos , Aguas Residuales
11.
J Environ Manage ; 213: 400-408, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29505995

RESUMEN

Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.


Asunto(s)
Carbón Orgánico , Frutas , Residuos Industriales , Aceite de Palma , Aceites de Plantas
12.
J Environ Manage ; 196: 674-680, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28365553

RESUMEN

In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m2/g) compared to the spherical TiO2 photocatalysts (11.34 m2/g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation.


Asunto(s)
Titanio , Rayos Ultravioleta , Catálisis , Malasia , Tamaño de la Partícula , Aceites de Plantas
13.
J Environ Manage ; 184(Pt 3): 487-493, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27784576

RESUMEN

This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 23 full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value.


Asunto(s)
Modelos Teóricos , Aceites de Plantas , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Óxido de Zinc/química , Óxido de Zinc/efectos de la radiación , Catálisis , Residuos Industriales/análisis , Aceite de Palma , Procesos Fotoquímicos , Reproducibilidad de los Resultados
14.
ACS Omega ; 8(33): 30598-30611, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636941

RESUMEN

A new sustainable solid carbon catalyst has been developed for biodiesel synthesis using pyrolytic coconut shell ash (CSA). The CSA support was loaded with various amounts of potassium carbonate (K2CO3), and response surface methodology with a central composite design was used to optimize the transesterification process. The best-performing catalyst was the 30 wt % K2CO3/CSA catalyst. The optimal conditions included a catalyst loading of 3.27 wt %, methanol:oil molar ratio of 9.98:1, reaction time of 74 min, and temperature of 65 °C, resulting in an obtained biodiesel yield of 97.14%. This catalyst was reusable for up to four cycles, but a reduction in the biodiesel yield was observed due to potassium ion leaching during the recovery process. A techno-economic analysis to assess the financial viability of the project revealed a net present value of 5.16 million USD for a project lifetime of 20 years, a payback period time of 2.49 years, and an internal rate of return of 44.2%. An environmental assessment to evaluate the impact of global warming potential from the production of biodiesel revealed a lower level of carbon dioxide emission (1401.86 ton/y) than in the conventional process (1784.6 ton/y).

15.
Chemosphere ; 311(Pt 1): 136989, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309058

RESUMEN

Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Adsorción , Nanotecnología
16.
Chemosphere ; 310: 136843, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36243081

RESUMEN

Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.


Asunto(s)
Oryza , Dióxido de Silicio , Dióxido de Silicio/química , Oryza/química , Adsorción
17.
Chemosphere ; 300: 134613, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35430200

RESUMEN

Arsenic (As) contamination in aqueous media is a major concern due to its adverse impacts on humans and the ecosystem more broadly because of its non-biodegradability. Consequently, an effective and selective sorbent is needed urgently to scavenge As pollutant. Herein, the adsorption behaviors of As(V) by Fe2O3 and Fe2O3 supported on different silica materials, consisting of unimodal mesoporous silica (Fe2O3/U-SiO2) and dual meso-macroporous silica (Fe2O3/B-SiO2), were compared to examine their structure-efficiency relationships in the elimination of As(V). Fe2O3/B-SiO2 was much faster at As(V) removal and had an impressively higher uptake capability, reaching nearly 50% and 2.5 mg g-1 within 5 min compared to bare Fe2O3 (6% and 0.3 mg g-1) and Fe2O3/U-SiO2 (11.9% and 0.59 mg g-1). These better results were because of the highly dispersed Fe2O3 nanoparticles on the B-SiO2 support that provided abundant reactive sites as well as a macropore structure facilitating As(V) diffusion into adsorptive sites. The maximum adsorptive capacity of Fe2O3/B-SiO2 (4.7 mg As per 1 g adsorbent) was 1.3- and 1.7-fold greater than for Fe2O3/U-SiO2 and Fe2O3, respectively. The outstanding performance and reusability of Fe2O3/B-SiO2 with its ease of production, economical and environmentally friendly features made it even more attractive for As(V) remediation. The explored relationship between the structure of SiO2-supported Fe2O3 sorbents and their performance in removing As(V) could be informative for the future design of highly efficient adsorbents for the decontamination of water.


Asunto(s)
Arsénico , Contaminantes Ambientales , Contaminantes Químicos del Agua , Adsorción , Arsénico/química , Ecosistema , Compuestos Férricos/química , Humanos , Dióxido de Silicio , Agua/química , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 308(Pt 1): 136267, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36055586

RESUMEN

Low cost Fe2O3-based sorbents with an exceptional selectivity toward the targeted As(V) pollutant have gained extensive attention in water treatment. However, their structural features often influence removal performance. In this respect, we present herein a rational design of silica-supported Fe2O3 sorbents with an enhanced morphological structure based on a simple temperature-induced process. Low-hydrothermal temperature synthesis (60 and 100 °C) provided a large silica-cluster size with a close packed structure (S-60 and S-100), contributing to an increase in mass transport resistance. Fe2O3/S-60 with 6.2-nm pore width silica achieved a maximum As(V) uptake capacity (qm) of only 3.5 mg g-1. Supporting Fe2O3 on S-100 with an approximately two-fold increase in the pore size (13 nm) did not lead to any evident enhancement in qe (3.7 mg g-1). However, expanding the pore window up to 22.6 nm (S-140) and 39.5 nm (S-180), along with changing from close-packed to sponge-like loose structures induced by high-temperature synthesis (140 °C and 180 °C), resulted in substantial increases in qm. Fe2O3/S-140 had 1.7 and 1.6 times higher qm (5.9 mg g-1) than Fe2O3/S-100 and Fe2O3/S-60, respectively. The highest qm (7.4 mg g-1) was achieved for Fe2O3/S-180, which was attributed to its relatively small-sized silica cluster and the largest cavities that facilitated easier access by As(V) to adsorbing sites.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Dióxido de Silicio/química , Temperatura , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
19.
Chemosphere ; 308(Pt 2): 136356, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087737

RESUMEN

Purification of As(V)-contaminated water through adsorption by Fe2O3-based materials is a promising technology due to its low-cost and high efficiency. Dispersing the Fe2O3 phase on silica supports can improve both the adsorption rate and capacity due to the reduction in Fe2O3 particle sizes and the prevention of clumping of the Fe2O3 particles. However, the clusters in conventional silica materials largely impede the diffusion of As(V) to reach the Fe2O3 sites dispersed inside the clusters. Here, by applying a gelatin template strategy, the structure of silica materials was tailored by changing the gelatin-to-silica ratio (0, 0.6, 1.2 and 1.8) and hydrothermal temperature (60 °C, 100 °C and 140 °C). The silica cluster size could be reduced using either a low gelatin-to-silica ratio (0.6) or a low hydrothermal temperature (60 °C). Increasing the gelatin-to-silica ratio to 1.2 created porous silica spheres with a hollow structure. The Fe2O3-loaded hollow porous silica spheres with a shell thickness of 280 nm had twice the maximum As(V) adsorption capacity (7.66 mg g-1) compared to the Fe2O3-loaded silica product prepared in the absence of gelatin (3.82 mg g-1). The maximum As(V) adsorption capacity could be further enhanced to 9.94 mg g-1 by reducing the shell thickness to 80 nm through increasing the gelatin-to-silica ratio to 1.8 and the hydrothermal temperature to 140 °C. In addition, the best Fe2O3-loaded hollow porous silica spheres had rapid As(V) adsorption and showed excellent durability as the As(V) removal efficiency slightly decreased to 98.9% subsequent to five adsorption-regeneration cycles.


Asunto(s)
Dióxido de Silicio , Aguas Residuales , Compuestos Férricos/química , Gelatina , Porosidad , Dióxido de Silicio/química , Aguas Residuales/química , Agua
20.
Chemosphere ; 287(Pt 1): 131959, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34454224

RESUMEN

The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Biomasa , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA