Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Opt Express ; 32(8): 13224-13234, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859298

RESUMEN

In this study, we propose a single-pixel computational imaging method based on a multi-input mutual supervision network (MIMSN). We input one-dimensional (1D) light intensity signals and two-dimensional (2D) random image signal into MIMSN, enabling the network to learn the correlation between the two signals and achieve information complementarity. The 2D signal provides spatial information to the reconstruction process, reducing the uncertainty of the reconstructed image. The mutual supervision of the reconstruction results for these two signals brings the reconstruction objective closer to the ground truth image. The 2D images generated by the MIMSN can be used as inputs for subsequent iterations, continuously merging prior information to ensure high-quality imaging at low sampling rates. The reconstruction network does not require pretraining, and 1D signals collected by a single-pixel detector serve as labels for the network, enabling high-quality image reconstruction in unfamiliar environments. Especially in scattering environments, it holds significant potential for applications.

2.
Nano Lett ; 23(2): 637-644, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36622966

RESUMEN

Metal-insulator-metal (MIM) configurations based on Fabry-Pérot resonators have advanced the development of color filtering through interactions between light and matter. However, dynamic color changes without breaking the structure of the MIM resonator upon environmental stimuli are still challenging. Here, we report monolithic metal-organic framework (MOF)-based MIM resonators with tunable bandwidth that can boost both dynamic optical filtering and active chemical sensing by laser-processing microwell arrays on the top metal layer. Programmable tuning of the reflection color of the MOF-based MIM resonator is achieved by controlling the MOF layer thicknesses, which is demonstrated by simulation of light-matter interactions on subwavelength scales. Laser-processed microwell arrays are used to boost sensing performance by extending the pathway for diffusion of external chemicals into nanopores of the MOFs. Both experiments and molecular dynamics simulations demonstrate that tailoring the period and height of the microwell array on the MIM resonator can advance the high detection sensitivity of chemicals.

3.
Opt Express ; 31(14): 23589-23597, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475439

RESUMEN

"Naked" ferroferric-oxide nanoparticles (FONPs) synthesized by a femtosecond laser ablation on a bulk stainless steel in liquid were applied to the Nd: YVO4 laser to achieve passive Q-switched pulse laser output. Without the pollution of ligand, the inherent light characteristic of "naked" FONPs was unaffected. The analysis of the morphological characteristics, dominant chemical elements, and phase composition of the FONPs showed that they were mainly composed of Fe3O4, which was spherical with an average diameter of 40 nm. The electron transition and orbital splitting of the iron element's octahedral center position under the laser-driven were considered the primary mechanisms of saturable absorption of Fe3O4 nanoparticles.

4.
Appl Opt ; 62(8): 1915-1920, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37133074

RESUMEN

A narrow linewidth Ti:sapphire laser is developed and characterized for the generation of an ultraviolet nanosecond laser pulses for the planar laser-induced fluorescence (PLIF) imaging of hydroxyl (OH). With a pump power of 11.4 W at 1 kHz, the Ti:sapphire laser produces 3.5 mJ at 849 nm with pulse duration of 17 ns and achieves a conversion efficiency of 28.2%. Accordingly, its third-harmonic generation outputs 0.56 mJ at 283 nm in BBO with type I phase match. An OH PLIF imaging system has been built; a 1 to 4 kHz fluorescent image of OH of a propane Bunsen burner has been captured based on this laser system.

5.
Appl Opt ; 61(25): 7401-7408, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256041

RESUMEN

Streak tube imaging lidar (STIL) can obtain 4-D images of a target, and its performance is mainly determined by the streak tube sensor. To obtain a large field of view, we developed a streak tube with a photocathode length as large as 35.3 mm, which is larger than the commonly used ST-HDR (30 mm). At the same time, the temporal resolution and dynamic spatial resolution are 60 ps and 12 lp/mm, which are very suitable to obtain accurate target coordinates for 4-D imaging. In addition, the streak tube has a high detection sensitivity of 46 mA/W at 500 nm and, hence, prospects in remote imaging. To test the performance of the streak tube, an underwater STIL experiment was conducted. Echo signal processing was performed by means of a bandpass filter and a matched filter, and then the peak detection algorithm was used to reconstruct the image. The results indicate that a spatial resolution better than 9 mm is achieved in the limpid water with a depth of 20 m, and a range accuracy of 1 cm is achieved in the turbid water with a depth of 10 m. Such a performance suggests that the large-field streak tube is of great potential for underwater target imaging and other remote imaging applications.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Señales Asistido por Computador , Agua
6.
Opt Express ; 28(21): 31093-31102, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115091

RESUMEN

Photosensitivity in photo-thermo-refractive (PTR) glass can be triggered by UV and near-infrared fs laser irradiation. Here we focus on the nonlinear photochemical process triggered by ultrashort laser Gaussian-Bessel beams. The transmission and absorption spectra show that the primary difference between UV and fs laser exposure is the formation of color centers and kinetic process of silver nanoparticles growth. It is contributed to the nonlinear ionization of PTR glass matrix and thermal effects during interaction of glass matrix and ultrashort laser pulses. Transmission electron microscopy verifies the generation of nanoscale crystals in the irradiated region, and X-ray diffraction shows the existence of quartz crystal and NaF after laser irradiation and thermal treatment. Moreover, the dependence of photochemical reaction on laser parameters is investigated, as well as the tailoring of silver nanoparticles. On this basis, volume Bragg gratings with ultrashort laser Gaussian-Bessel beams are inscribed as an application which possess good diffraction characteristics.

7.
Appl Opt ; 59(27): 8242-8246, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32976408

RESUMEN

Waveguide fabrication with an ultrafast laser system and the mechanism of index modification have been investigated in Corning Gorilla glass. Type I waveguides were obtained when the pulse duration was in the range of 250 fs to 15 ps. With the increase of pulse energy, single-mode waveguides converted to ring-mode waveguides. The variation tendency of Raman peak at 580cm-1 band is nonmonotonic with the increase of pulse energy, and the negative index change appears finally in the waveguide core. The alkali ions migrated towards the outside with different diffusivities after the laser irradiation. Finally, bend waveguides and hexagon-link waveguide connectors were produced.

8.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218344

RESUMEN

The bioactivity and biocompatibility play key roles in the success of dental and orthopaedic implants. Although most commercial implant systems use various surface microstructures, the ideal multi-scale topographies capable of controlling osteointegration have not yielded conclusive results. Inspired by both the isotropic adhesion of the skin structures in tree frog toe pads and the anisotropic adhesion of the corrugated ridges on the scales of Morpho butterfly wings, composite micro/nano-structures, including the array of micro-hexagons and oriented nano-ripples on titanium alloy implants, were respectively fabricated by microsecond laser direct writing and femtosecond laser-induced periodic surface structures, to improve cell adherence, alignment and proliferation on implants. The main differences in both the bioactivity in simulated body fluid and the biocompatibility in osteoblastic cell MC3T3 proliferation were measured and analyzed among Ti-6Al-4V samples with smooth surface, micro-hexagons and composite micro/nano-structures, respectively. Of note, bioinspired micro/nano-structures displayed the best bioactivity and biocompatibility after in vitro experiments, and meanwhile, the nano-ripples were able to induce cellular alignment within the micro-hexagons. The reasons for these differences were found in the topographical cues. An innovative functionalization strategy of controlling the osteointegration on titanium alloy implants is proposed using the composite micro/nano-structures, which is meaningful in various regenerative medicine applications and implant fields.


Asunto(s)
Materiales Biocompatibles/farmacología , Rayos Láser , Nanoestructuras/química , Titanio/farmacología , Aleaciones , Animales , Anuros , Biomimética , Mariposas Diurnas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/ultraestructura , Propiedades de Superficie
9.
Opt Express ; 27(4): 5337-5345, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876133

RESUMEN

Here, we report on a packaging method for silver nanodots (SNDs) by using high-silicate porous glass. Millions of nanopores, which are randomly distributed in porous glass, are used as cells for SND nucleation and growth during the initial chemical-reduction process. Then, the sample is annealed at a high-temperature in a reducing atmosphere to impel the further SND growth and nanopore collapse. The compact SND-embedded transparent glass is synthesized in the end. Morphology characterization shows that the SNDs that are encapsulated in the sample have a uniform size of 1.5 to 4.5 nm. Both the sample's saturable and reverse saturable absorptions are observed under the irradiation of 100 fs laser pulses at 800 nm. Saturable absorption's threshhold is characterized to be 1.4 × 1011 W/cm2, which is much lower than what was ever reported. Furthermore, the SNDs-embedded silica as a saturable absorber (SA) has been demonstrated in the Q-switched Nd:YVO4 laser. The pulse duration as short as 53 nanoseconds is obtained. To our knowledge, it is the first time that SNDs are used as a SA in the passively Q-switched all solid-state laser.

10.
Opt Express ; 26(2): 917-926, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401971

RESUMEN

It is known that ultrashort laser welding of materials requires an accurate laser beam focusing and positioning onto the samples interface. This puts forward severe challenges for controlling the focus position particularly considering that the tightly focused Gaussian beam has a short, micron-sized Rayleigh range. Here we propose a large-focal-depth welding method to bond materials by using non-diffractive femtosecond laser Bessel beams. A zero-order Bessel beam is produced by an axicon and directly imaged on the interface between silicon and borosilicate glass to write welding lines, ensuring a non-diffractive length in the 500 µm range and micron-sized FWHM diameter. The focal-position tolerant zone for effective welding increases thus many-fold compared to traditional Gaussian beam welding. The shear joining strength of the sample welded by this method could be as high as 16.5 MPa. The Raman spectrum and element distribution analyses within the cross section of welding line reveal that substance mixing has occurred during laser irradiation, which is considered as the main reason for femtosecond laser induced bonding.

11.
Opt Express ; 25(6): 6244-6252, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28380977

RESUMEN

Graphene-like two-dimensional (2D) materials have shown remarkable broadband saturable absorption properties. These materials were successfully applied into mode locked lasers to generate laser pulses with the pulse duration from picosecond to femtosecond. However, these novel materials have not shown good performance as far in another important aspect: Q-switched lasers. Solid-state or fiber lasers Q-switched with broadband absorbers usually generated pulses of one hundred nanosecond to several microsecond, which show weak competitiveness compared to traditional absorbers such as Cr: YAG and semiconductor saturable absorption mirror (SESAM). In this paper we utilized BP, WS2 and MoS2 solutions as saturable absorbers (SAs) to construct the passively Q-switched Nd:YVO4 lasers. The pulse durations as short as 2.86 nanosecond was obtained. To the best of our knowledge, it was the first report that the pulse durations approached several nanosecond level in Q-switched lasers with liquid-form of BP, WS2 and MoS2 SAs.

12.
Opt Express ; 25(3): 1702-1709, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519024

RESUMEN

It is a big challenge to weld two materials with large differences in coefficients of thermal expansion and melting points. Here we report that the welding between fused silica (softening point, 1720°C) and SiC wafer (melting point, 3100°C) is achieved with a near infrared femtosecond laser at 800 nm. Elements are observed to have a spatial distribution gradient within the cross section of welding line, revealing that mixing and inter-diffusion of substances have occurred during laser irradiation. This is attributed to the femtosecond laser induced local phase transition and volume expansion. Through optimizing the welding parameters, pulse energy and interval of the welding lines, a shear joining strength as high as 15.1 MPa is achieved. In addition, the influence mechanism of the laser ablation on welding quality of the sample without pre-optical contact is carefully studied by measuring the laser induced interface modification.

13.
Opt Lett ; 42(17): 3470-3473, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957065

RESUMEN

The L-shape waveguide was written in fused silica using a femtosecond laser with beam shaping. The guiding structure supports good light turning; 0.88 dB/turn was achieved at the silica-air interface. By using the finite-different time-domain method, the turn loss due to the turning structure and refractive index of the L-shape waveguide has been simulated. The results show that the proposed method has unprecedented flexibility in fabricating a 90°-bend waveguide.

14.
Opt Express ; 24(11): 11558-68, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27410083

RESUMEN

The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

15.
Appl Opt ; 54(30): 8957-61, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26560385

RESUMEN

In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.


Asunto(s)
Vidrio/química , Vidrio/efectos de la radiación , Rayos Láser , Metales/química , Metales/efectos de la radiación , Soldadura/métodos , Relación Dosis-Respuesta en la Radiación , Materiales Manufacturados/efectos de la radiación , Ensayo de Materiales , Nanopartículas/química , Nanopartículas/efectos de la radiación , Tamaño de la Partícula , Dosis de Radiación , Resistencia al Corte/efectos de la radiación , Estrés Mecánico , Propiedades de Superficie/efectos de la radiación , Resistencia a la Tracción/efectos de la radiación
16.
Opt Express ; 22(23): 28771-82, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402116

RESUMEN

Expanded-core structures based on layered increased index (type I) waveguiding traces are fabricated by ultrafast laser photoinscription in bulk optical glasses, with examples for fused silica and chalcogenide glasses. The expanded-core waveguides can serve for large-mode-area guiding concepts and their feasibility is experimentally investigated. A parametric study of the geometry, number of traces and index contrast indicates the possibility to design guided modes characteristics as exemplified in fused silica. A specific arrangement consisting of 8 traces of guiding layers with 6µm separation exhibit single-mode transport properties with mode field area of ~805µm². The condition of single mode operation is also discussed in the frame of the dispersion relation of light guiding in periodical dielectric structures. The supported supermode of expanded-core structures can be controlled by careful design of the refractive index change, the number of guiding layers and the thickness of the interlayers. Inspection of the propagation characteristics shows equally low loss features. A Y-branching splitter based on expanded-core concept conserving single mode characteristics is fabricated. The optical design is equally successfully tested in chalcogenide Gallium Lanthanum Sulfide glass. Ultrafast laser inscribed expanded-core waveguiding provides therefore an interesting path of fabricating large mode area waveguides usable in near infrared and mid-infrared region beneficial for applications requiring high power or large mode dimensions.


Asunto(s)
Vidrio/química , Rayos Láser , Fenómenos Ópticos , Dióxido de Silicio/química , Factores de Tiempo
17.
Micromachines (Basel) ; 15(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38398929

RESUMEN

Utilizing the principle of laser-induced periodic surface structures (LIPSSs), this research delves into the morphological evolution of single-crystal silicon surfaces irradiated by a near-infrared picosecond laser through a scanning mode. With the increase in laser energy density, the nanostructure morphology on single-crystal silicon surfaces induced by incident lasers with different polarization directions sequentially produces high spatial-frequency LIPSSs (HSFLs) with a period of 220 nm ± 10 nm parallel to the laser polarization, low spatial-frequency LIPSSs (LSFLs) with a period of 770 nm ± 85 nm perpendicular to the direction of the polarization, and groove structures. Furthermore, by varying the angle between the laser polarization and the scanning direction, the study examined the combined anisotropic effects of the laser polarization scanning direction angle and the laser polarization crystal orientation angle on the genesis of LIPSSs on single-crystal silicon (100) surfaces. The experiments revealed polarization-related anisotropic characteristics in the morphology of HSFLs. It was found that when the polarization angle approached 45°, the regularity of the LSFLs deteriorated, the modification width decreased, and the periodicity increased. This is critical for the precise control of the LSFLs' morphology.

18.
Opt Express ; 21(8): 9851-61, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609691

RESUMEN

A method for precise multi-spot parallel ultrafast laser material structuring is presented based on multi-beam interference generated by dynamic spatial phase engineering. A Spatial Light Modulator (SLM) and digitally programming of phase masks are used to accomplish the function of a multi-facet pyramid lens, so that the laser beam can be spatially modulated to create beam multiplexing and desired two-dimensional (2D) multi-beam interference patterns. Various periodic microstructures on metallic alloy surfaces are fabricated with this technique. A method of preparing extended scale periodic microstructures by loading dynamic time-varying phases is also demonstrated. Scanning electron microscopy (SEM) reveals the period and morphology of the microstructures created using this technique. The asymmetry of interference modes generated from the beams with asymmetric wave vector distributions is equally explored. The flexibility of programming the period of the microstructures is demonstrated.


Asunto(s)
Rayos Láser , Lentes , Fotograbar/instrumentación , Refractometría/instrumentación , Propiedades de Superficie/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo
19.
Opt Express ; 21(13): 15259-67, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23842312

RESUMEN

Irradiation inside some transparent materials such as fused silica can induce nanograting structures at the focal area. Here, we investigate experimentally how the nanograting formation can be influenced by tuning the ionization property of the transparent material, which is achieved by irradiation inside a porous glass immersed in water doped with NaCl at variable concentrations. Our results show that the doping of NaCl not only reduces the threshold fluence of optical breakdown, but also leads to nanograting structures with shorter periods. These effects may be attributed to the enhanced photoionization in water doped with NaCl.

20.
Appl Opt ; 52(33): 7981-6, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24513748

RESUMEN

The evanescently coupled multicore waveguide lattice composed of 37 linear type I cores hexagonally arranged has been theoretically studied and fabricated by low-repetition-rate femtosecond laser inscription of bulk fused silica. The effects of the single core's numerical apertures (NAs) and spacing on the mode characteristics of the 37-core waveguide were calculated by the finite-element method. It was found that the mode field areas of the fundamental mode LP01 with 5 µm spacing of different NAs were all larger than 577 µm², which was confirmed by the experiments. The measured near-field mode profiles for different writing conditions and different spacing also showed that the waveguide supported both a single mode (LP01) and two modes (LP01 and LP11). The multicore waveguide, according to our study, is particularly interesting for mode converters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA