Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 278(Pt 2): 111556, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33137685

RESUMEN

The Soil Water Assessment Tool (SWAT) was used for exploring the sources and retention dynamics of phosphorus nutrient in the river system of the Yong River Basin, China. The performance of the SWAT model was assessed. The retention dynamics of phosphorus nutrient in the river continuum and the factors contributing to those patterns were studied. The results showed that an average of 1828 tons of TP entered the river network of the Yong River Basin annually and in-stream processes trapped 1161 tons yr-1 of TP in the watercourse, which accounted for 63.5% of the annual TP inputs. The TP retention rates in the river network ranged from 3.08 to 63.43 mg m-2 day-1. An average of 666.9 tons of TP was delivered from the estuary to the East China Sea annually. The unit area riverine exports of TP ranged from 102.21 to 244.00 kg km-2 yr-1. The river network is a net sink for TP and is going through a phosphorus accumulation phase. The results confirm that the river system has a considerable phosphorus retention capacity that is highly variable on a spatiotemporal scale. Because of the cumulative effect of continued phosphorus removal along the entire flow path, the retention fractions of phosphorus removed from all streams at the basin scale is considerably higher than that of an individual river portion. The variations of hydrological regimes, water surface area, unit area inputs of phosphorus, and the concentrations of suspended sediments have a great influence on phosphorus retention.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Suelo , Agua , Contaminantes Químicos del Agua/análisis
2.
Eur J Nutr ; 59(4): 1655-1666, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31230147

RESUMEN

PURPOSE: Chronic gastritis is observed in almost half world population. Traditional medications against chronic gastritis might produce adverse effects, so alternative nutritional strategies are needed to prevent the aggravation of gastric mucosal damage. The aim of this study is to evaluate the protective effect of the combination of wheat peptides and fucoidan (WPF) on adults diagnosed with chronic superficial gastritis in a randomized, double-blind, placebo-controlled clinical trial. METHODS: Participants were randomized to receive WPF (N = 53) or placebo (N = 53) once daily for 45 days. Pathological grading of gastric mucosal damage was scored using gastroscopy. Fecal samples were collected for the determination of calprotectin, short chain fatty acids (SCFA) levels and metagenomics analysis. Questionnaires for self-reported gastrointestinal discomforts, life quality and food frequency were collected throughout the study. RESULTS: WPF intervention reduced gastric mucosal damage in 70% subjects (P < 0.001). Significantly less stomach pain (P < 0.001), belching (P = 0.028), bloating (P < 0.001), acid reflux (P < 0.001), loss of appetite (P = 0.021), increased food intake (P = 0.020), and promoted life quality (P = 0.014) were reported in the WPF group. WPF intervention significantly decreased fecal calprotectin level (P = 0.003) while slightly increased fecal SCFAs level (P = 0.092). In addition, we found altered microbiota composition post-intervention with increased Bifidobacterium pseudocatenulatum (P = 0.032), Eubacterium siraeum (P = 0.036), Bacteroides intestinalis (P = 0.024) and decreased Prevotella copri (P = 0.055). CONCLUSIONS: WPF intervention could be utilized as a nutritional alternative to mitigate the progression of chronic gastritis. Furthermore, WPF played an important role in altering gut microbial profile and SCFA production, which might benefit the lower gastrointestinal tract.


Asunto(s)
Antiulcerosos/farmacología , Gastritis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Péptidos/farmacología , Polisacáridos/farmacología , Triticum , Adulto , China , Enfermedad Crónica , Método Doble Ciego , Heces/microbiología , Femenino , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/microbiología , Humanos , Masculino , Encuestas y Cuestionarios
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2783-2790, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28789977

RESUMEN

Sirtuin 1 (SIRT1) has been reported to protect against nonalcoholic fatty liver disease (NAFLD) development. The mechanism of how SIRT1 deacetylase activity affects NAFLD has not been well investigated. The current investigation addressed the causal effect of systemic SIRT1 activity on NAFLD development and the underlying mechanism involved in both liver and mesenteric adipose tissue (MAT). Both SIRT1 homozygous mice ablated the catalytic activity (sirt1Y/Y) and their corresponding wild type littermates (WT) were fed a high fat diet (HFD, 60% calories from fat) for 34weeks. Sirt1Y/Y mice showed significantly higher level of hepatic triglyceride which was accompanied with higher levels of SREBP-1 and SCD1and decreased phosphorylation of LKB1 and AMPK in the liver. Compared with WT mice, mRNA expression of lipogenic genes (lxrα, srebp-1c, scd1 and fas) in the MAT increased significantly in sirt1Y/Y mice. Fatty acid oxidation biomarkers (acox1, acox3, cpt, ucp1, sirt3) in both liver and MAT were comparable between groups. Interestingly, we observed that in sirt1Y/Y mice, the mRNA level of hormone sensitive lipase (hsl), adipose triglyceride lipase (atgl) and perilipin-2 (plin-2), all involved in lipolysis, significantly increased in MAT, but not in epididymal adipose tissue. These changes positively correlated with circulating free fatty acid (FFA) concentrations and higher hepatic mRNA expression of cd36 for FFA uptake. The present study has provided novel evidence to suggest that under HFD-induced metabolic surplus, the lack of SIRT1 catalytic activity promotes release of FFA from MAT and escalate NAFLD by interfering with lipid homeostasis in both liver and MAT.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Mesenterio/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 1/metabolismo , Tejido Adiposo/patología , Animales , Regulación de la Expresión Génica , Lipogénesis , Hígado/patología , Mesenterio/patología , Ratones , Ratones Mutantes , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Sirtuina 1/genética
4.
Front Nutr ; 11: 1285169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304546

RESUMEN

Colorectal disturbances encompass a variety of disorders that impact the colon and rectum, such as colitis and colon cancer. Butyrate, a short-chain fatty acid, plays a pivotal role in supporting gut health by nourishing colonocytes, promoting barrier function, modulating inflammation, and fostering a balanced microbiome. Increasing colorectal butyrate concentration may serve as a critical strategy to improve colon function and reduce the risk of colorectal disturbances. Butyrylated high-amylose maize starch (HAMSB) is an edible ingredient that efficiently delivers butyrate to the colon. HAMSB is developed by esterifying a high-amylose starch backbone with butyric anhydride. With a degree of substitution of 0.25, each hydroxy group of HAMSB is substituted by a butyryl group in every four D-glucopyranosyl units. In humans, the digestibility of HAMSB is 68% (w/w), and 60% butyrate molecules attached to the starch backbone is absorbed by the colon. One clinical trial yielded two publications, which showed that HAMSB significantly reduced rectal O6-methyl-guanine adducts and epithelial proliferation induced by the high protein diet. Fecal microbial profiles were assessed in three clinical trials, showing that HAMSB supplementation was consistently linked to increased abundance of Parabacteroides distasonis. In animal studies, HAMSB was effective in reducing the risk of diet- or AOM-induced colon cancer by reducing genetic damage, but the mechanisms differed. HAMSB functioned through affecting cecal ammonia levels by modulating colon pH in diet-induced cancer, while it ameliorated chemical-induced colon cancer through downregulating miR19b and miR92a expressions and subsequently activating the caspase-dependent apoptosis. Furthermore, animal studies showed that HAMSB improved colitis via regulating the gut immune modulation by inhibiting histone deacetylase and activating G protein-coupled receptors, but its role in bacteria-induced colon colitis requires further investigation. In conclusion, HAMSB is a food ingredient that may deliver butyrate to the colon to support colon health. Further clinical trials are warranted to validate earlier findings and determine the minimum effective dose of HAMSB.

5.
Environ Technol ; 44(22): 3317-3330, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35316154

RESUMEN

Conventional bioretention filters lack satisfactory performance in nitrogen removal. In this study, we used a mixture of cultivated soil and river sand as the bioretention filter to remove nitrogen pollutants from simulated rainwater runoff. To improve its permeability and nitrogen removal performance, both activated carbon and ceramsite were used as additives. The nitrogen removal processes and its mass accumulation in the modified bioretention filters were studied. The contribution of adsorption and biotransformation processes, together with the effects of percolate rate on nitrogen removal performance was explored. The results showed that an activated carbon layer in the bioretention filters could obviously improve nitrogen removal efficiencies, but its location made no significant difference in nitrogen removal performance. Bioretention filters modified with 20% of ceramsite could achieve the optimal percolate rate and nitrogen removal efficiencies. At given conditions, the average removal efficiencies of ammonium nitrogen (NH3-N), nitrate-nitrogen (NO3-N), and total nitrogen (TN) by the modified bioretention filter reached 80.27%, 41.48%, and 59.45%, respectively. During the leaching processes, organic nitrogen originated in the filter materials can be mineralised into NH3-N, then be denitrified and completely removed in the anaerobic environment under flooding conditions. Biotransformation in the modified bioretention filters caused a reduction of NH3-N removal efficiency by 15.41% and an increase of NO3-N removal efficiency by 31.03%. The modified bioretention filter can withstand a long-term operation. Compared with NO3-N and TN, the pollutant of NH3-N in rainwater runoff is not easy to form a mass accumulation in the modified bioretention filter.Highlights The modified bioretention filter showed high percolation rate and nitrogen removal.Hydraulic residence time is a critical design parameter to achieve nitrogen removal.NH3-N is not easy to form a mass accumulation in the filler media as NO3-N.Biodegradation increased NO3-N removal efficiency by 31.03% at given conditions.


Asunto(s)
Desnitrificación , Contaminantes Ambientales , Carbón Orgánico , Nitrógeno/análisis , Lluvia
6.
Nutrients ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839326

RESUMEN

Nutritional biomarkers can be used as important indicators of nutritional status and play crucial roles in the prevention as well as prognosis optimization of various metabolism-related diseases. Measuring dietary with the deployment of biomarker assessments provides quantitative nutritional information that can better predict the health outcomes. With the increased availability of nutritional biomarkers and the development of assessment tools, the specificity and sensitivity of nutritional biomarkers have been greatly improved. This enables efficient disease surveillance in nutrition research. A wide range of biomarkers have been used in different types of studies, including clinical trials, observational studies, and qualitative studies, to reflect the relationship between diet and health. Through a comprehensive literature search, we reviewed the well-established nutritional biomarkers of vitamins, minerals, and phytonutrients, and their association with epidemiological studies, to better understand the role of nutrition in health and disease.


Asunto(s)
Micronutrientes , Vitaminas , Vitaminas/uso terapéutico , Estado Nutricional , Dieta , Biomarcadores , Estudios Epidemiológicos , Fitoquímicos
7.
Front Nutr ; 9: 987103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225879

RESUMEN

Background: Carotenoids are abundant in colored fruits and vegetables. Non-alcoholic fatty liver disease (NAFLD) is a global burden and risk factor for end-stage hepatic diseases. This study aims to compare the anti-NAFLD efficacy between carotenoid-rich and carotenoid-deficient vegetables. Materials and methods: Male C57BL/6J mice were randomized to one of four experimental diets for 15 weeks (n = 12 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 60% calories from fat), HFD with 20% white carrot powders (HFD + WC), or with 20% orange carrot powders (HFD + OC). Results: We observed that carotenoids in the orange carrots reduced HFD-induced weight gain, better than white carrots. Histological and triglyceride (TG) analyses revealed significantly decreased HFD-induced hepatic lipid deposition and TG content in the HFD + WC group, which was further reduced in the HFD + OC group. Western blot analysis demonstrated inconsistent changes of fatty acid synthesis-related proteins but significantly improved ACOX-1 and CPT-II, indicating that orange carrot carotenoids had the potential to inhibit NAFLD by improving ß-oxidation. Further investigation showed significantly higher mRNA and protein levels of PPARα and its transcription factor activity. Conclusion: Carotenoid-rich foods may display more potent efficacy in mitigating NAFLD than those with low carotenoid levels.

8.
Front Nutr ; 9: 960309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051901

RESUMEN

Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.

9.
Front Nutr ; 9: 985723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185685

RESUMEN

Background: Interindividual differences in response to personalized nutrition (PN) intervention were affected by multiple factors, including genetic backgrounds and gut microbiota. The fat mass and obesity associated (FTO) gene is an important factor related to hyperlipidemia and occurrence of cardiovascular diseases. However, few studies have explored the differences in response to intervention among subjects with different genotypes of FTO, and the associations between gut microbiota and individual responses. Objective: To explore the differential lipid metabolism outcomes associated with FTO gene polymorphisms in response to PN intervention, the altered taxonomic features of gut microbiota caused by the intervention, and the associations between gut microbiota and lipid metabolism outcomes. Methods: A total of 400 overweight or obese adults were recruited in the study and randomly divided into the PN group and control group, of whom 318 completed the 12-week intervention. The single nucleotide polymorphism (SNP) of rs1121980 in FTO was genotyped. Gut microbiota and blood lipids were determined at baseline and week 12. Functional property of microbiota was predicted using Tax4Fun functional prediction analysis. Results: Subjects with the risk genotype of FTO had significantly higher weight and waist circumference (WC) at baseline. Generalized linear regression models showed that the reduction in weight, body mass index (BMI), WC, body fat percentage, total cholesterol (TCHO), and low-density lipoprotein (LDL) was greater in subjects with the risk genotype of FTO and in the PN group. Significant interaction effects between genotype and intervention on weight, BMI, WC, TCHO, and LDL were found after stratifying for specific genotype of FTO. All subjects showed significant increasement in α diversity of gut microbiota after intervention except for those with the non-risk genotype in the control group. Gut microbiota, including Blautia and Firmicutes, might be involved in lipid metabolism in response to interventions. The predicted functions of the microbiota in subjects with different genotypes were related to lipid metabolism-related pathways, including fatty acid biosynthesis and degradation. Conclusion: Subjects with the risk genotype of FTO had better response to nutrition intervention, and PN intervention showed better amelioration in anthropometric parameters and blood lipids than the control. Gut microbiota might be involved in modulating differential lipid metabolism responses to intervention in subjects with different genotypes. Trial registration: [Chictr.org.cn], identifier [ChiCTR1900026226].

10.
Front Nutr ; 9: 919882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811975

RESUMEN

Background: Overweight and obesity increase the risk of noncommunicable diseases (NCDs). Personalized nutrition (PN) approaches may provide tailored nutritional advice/service by focusing on individual's unique characteristics to prevent against NCDs. Objective: We aimed to compare the effect of PN intervention with the traditional "one size fits all" intervention on health status in overweight/obese Chinese adults. Methods: In this 12-week randomized controlled trial, 400 adults with BMI ≥24 kg/m2 were randomized to control group (CG, n = 200) and PN group (PNG, n = 200). The CG received conventional health guidance according to the Dietary Guidelines for Chinese Residents and Chinese DRIs Handbook, whereas the PNG experienced PN intervention that was developed by using decision trees based on the subjects' anthropometric measurements, blood samples (phenotype), buccal cells (genotype), and dietary and physical activity (PA) assessments (baseline and updated). Results: Compared with the conventional intervention, PN intervention significantly improved clinical outcomes of anthropometric (e.g., body mass index (BMI), body fat percentage, waist circumference) and blood biomarkers (e.g., blood lipids, uric acid, homocysteine). The improvement in clinical outcomes was achieved through behavior change in diet and PA. The subjects in the PNG had higher China dietary guidelines index values and PA levels. Personalized recommendations of "lose weight," "increase fiber" and "take multivitamin/mineral supplements" were the major contributors to the decrease of BMI and improvement of lipid profile. Conclusion: We provided the first evidence that PN intervention was more beneficial than conventional nutrition intervention to improve health status in overweight/obese Chinese adults. This study provides a model of framework for developing personalized advice in Chinese population.Chictr.org.cn (ChiCTR1900026226).

11.
Front Nutr ; 9: 992986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159456

RESUMEN

Nutritional disorders have become a major public health issue, requiring increased targeted approaches. Personalized nutrition adapted to individual needs has garnered dramatic attention as an effective way to improve nutritional balance and maintain health. With the rapidly evolving fields of genomics and nutrigenetics, accumulation of genetic variants has been indicated to alter the effects of nutritional supplementation, suggesting its indispensable role in the genotype-based personalized nutrition. Additionally, the metabolism of nutrients, such as lipids, especially omega-3 polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron, and calcium could be effectively improved with related genetic variants. This review focuses on existing literatures linking critical genetic variants to the nutrient and the ways in which these variants influence the outcomes of certain nutritional supplementations. Although further studies are required in this direction, such evidence provides valuable insights for the guidance of appropriate interventions using genetic information, thus paving the way for the smooth transition of conventional generic approach to genotype-based personalized nutrition.

12.
Front Cell Infect Microbiol ; 12: 932309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093196

RESUMEN

Perinatal depression is a mood disorder that is reported in women during pregnancy (prenatal) and after childbirth (postnatal). The onset of perinatal depression is associated with changes in reproductive hormones, stress hormones and neurosteroids. These chemical compounds can be modulated by the gut microbiota, which may affect maternal mental health during the perinatal period via the gut-brain-axis. Recent studies suggest that nutritional and dietary interventions (vitamin D, ω-3 fatty acids, iron, and fiber) effectively prevent or mitigate maternal depression and anxiety, but their efficacy is confounded by various factors, including the gut microbiota. Probiotics are efficacious in maintaining microbiota homeostasis, and thus, have the potential to modulate the development of perinatal mood disorders, despite no evidence in human. Therefore, clinical trials are warranted to investigate the role of probiotic supplementation in perinatal depression and behavioral changes. This article reviews the interplay between nutrition, gut microbiota and mood and cognition, and the evidence suggesting that probiotics affect the onset and development of perinatal depression.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Ansiedad , Depresión , Femenino , Hormonas , Humanos , Embarazo , Probióticos/uso terapéutico
13.
Front Cell Infect Microbiol ; 12: 1053553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439221

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2022.932309.].

14.
Adv Nutr ; 12(3): 850-864, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179051

RESUMEN

Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.


Asunto(s)
Enfermedades Pulmonares , Fosfatidilinositol 3-Quinasas , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Xantófilas/farmacología
15.
Front Nutr ; 8: 723480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646849

RESUMEN

Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, ß-carotene, in the in vitro epithelial cell model. Methods: We examined the function of ß-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of ß-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression. Results: ß-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. ß-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function. Conclusions: ß-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of ß-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.

16.
ACS Synth Biol ; 10(5): 1039-1052, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843197

RESUMEN

Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (ß-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled ß-carotene synthesis (194 µg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional ß-carotene recovered in feces was 56-fold higher than the ß-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.


Asunto(s)
Antineoplásicos/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Indoles/metabolismo , Ingeniería Metabólica/métodos , Probióticos/metabolismo , Provitaminas/biosíntesis , Saccharomyces boulardii/metabolismo , beta Caroteno/biosíntesis , Animales , Sistemas CRISPR-Cas , Heces/química , Femenino , Microbioma Gastrointestinal , Edición Génica/métodos , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Microorganismos Modificados Genéticamente , Familia de Multigenes , Plásmidos/genética , Regiones Promotoras Genéticas , Saccharomyces boulardii/genética , Saccharomyces cerevisiae/genética
17.
Front Nutr ; 8: 658630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901100

RESUMEN

Dietary therapy may be beneficial in alleviating symptoms of chronic fatigue syndrome (CFS), a disorder that is characterized by extreme fatigue and other symptoms, but the cause of which remains unclear. The aim of this study was to evaluate the protective effect of a botanical product containing cistanche (Cistanche tubulosa [Schenk] Wight) and ginkgo (Ginkgo biloba L.) extracts on adults with CFS in a randomized, double-blind, placebo-controlled clinical trial. A total of 190 subjects (35-60 years old, non-obese) with CFS were randomized to receive one tablet of a low dose (120-mg ginkgo and 300-mg cistanche), a high dose (180-mg ginkgo and 450-mg cistanche) or a placebo once daily for 60 days. Blood samples and responses on the Chalder fatigue scale (CFQ 11), the World Health Organization's quality of life questionnaire (WHOQOL), and the sexual life quality questionnaire (SLQQ) were collected at baseline and post-intervention. CFS symptoms of impaired memory or concentration, physical fatigue, unrefreshing sleep, and post-exertional malaise were significantly improved (p < 0.001) in both of the treatment groups. The botanical intervention significantly decreased physical and mental fatigue scores of CFQ 11 and improved WHOQOL and SLQQ scores of the subjects (p < 0.01). Levels of blood ammonia and lactic acid in the treatment groups were significantly lower than those of the placebo group (low-dose: p < 0.05; high-dose: p < 0.01). In addition, the change in lactic acid concentration was negatively associated with the severity of CFS symptoms (p = 0.0108) and was correlated with the change in total physical fatigue score of the CFQ (p = 0.0302). Considering the trivial effect size, the results may lack clinical significance. In conclusion, this botanical product showed promising effects in ameliorating the symptoms of CFS. Clinical trials with improved assessment tools, an expanded sample size, and an extended follow-up period are warranted to further validate the findings. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT02807649.

18.
Sci Total Environ ; 751: 142246, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33181976

RESUMEN

Calcium ion is an important cation influencing the binding of recalcitrant organic contaminants with activated sludge during wastewater treatment process, but there is still unknown about its role in amphoteric fluoroquinolones binding. Binding experiments show that Ca2+ markedly inhibited binding of ciprofloxacin (CIP) onto sludge, causing 7-203 times of CIP release. Multi-spectroscopic examinations indicate that tryptophan-like and tyrosine-like proteins in extracellular polymeric substances (EPS) were dominant components for CIP binding by static quenching and forming CIP-proteins complexes. Addition of Ca2+ into EPS and CIP binding systems induced increase of association constants (from 0.024-0.064 to 0.027-0.084 L/µmol) and binding constants (from 0.002-0.039 to 0.012-0.107) and decrease of binding sites number (from 0.893-2.007 to 0.721-1.386). Functional groups of EPS and secondary structure of proteins were remarkably changed upon reactions with CIP and Ca2+. Calcium ion interacted with EPS and CIP binding system in two distinct ways: Ca2+ shielded CO in amide I in EPS for CIP binding, whereas strengthened binding between CIP and functional groups including CO in carboxyl groups in extra-microcolony polymers and OH in extra-cellular polymers by forming ternary complexes. Cation competition for CO in amide I is responsible for Ca2+ induced CIP release from the sludge. Results suggest the highly potential release of CIP from high saline wastewater and cation-conditioned sludge which needs further monitoring and evaluation.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Ciprofloxacina , Análisis Espectral , Aguas Residuales
19.
Antioxidants (Basel) ; 9(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708354

RESUMEN

BACKGROUND: Oxidative stress plays a critical role in lung cancer progression. Carotenoids are efficient antioxidants. The objective of this study was to explore the efficacy of all-trans retinoic acid (ATRA) and carotenoids in cigarette smoke-induced oxidative stress within A549 human lung cancer epithelial cells. METHODS: A549 cells were pretreated with 1-nM, 10-nM, 100-nM, 1-µM and 10-µM ATRA, ß-carotene (BC) and lycopene for 24 h, followed by exposure to cigarette smoke using a smoking chamber. RESULTS: The OxyBlot analysis showed that smoking significantly increased oxidative stress, which was inhibited by lycopene at 1 nM and 10 nM (p < 0.05). In the cells exposed to smoke, lycopene increased 8-oxoguanine DNA glycosylase (OGG1) expression at 1 nM, 10 nM, 100 nM, and 1 µM (p < 0.05), but not at 10 µM. Lycopene at lower doses also improved Nei like DNA glycosylases (NEIL1, NEIL2, NEIL3), and connexin-43 (Cx43) protein levels (p < 0.05). Interestingly, lycopene at lower concentrations promoted OGG1 expression within the cells exposed to smoke to an even greater extent than the cells not exposed to smoke (p < 0.01). This may be attributed to the increased SR-B1 mRNA levels with cigarette smoke exposure (p < 0.05). CONCLUSIONS: Lycopene treatment at a lower dosage could inhibit smoke-induced oxidative stress and promote genome stability. These novel findings will shed light on the molecular mechanism of lycopene action against lung cancer.

20.
Front Psychol ; 11: 1451, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903693

RESUMEN

Background: Seasonal affective disorder (SAD) is a biological and mood disorder with a seasonal pattern. Dietary intervention and nutritional status have been reported to affect SAD severity. The objective of this study was to systematically review the evidence of associations between SAD and diet, eating behavior, and nutrition intervention. Methods: We performed a comprehensive search of MEDLINE, EMBASE, Web of Science, and Google Scholar from inception up to July 1, 2019. Studies that examined diet and eating behaviors in SAD patients and tests of nutrition interventions for SAD were included. Two independent investigators extracted data based on study designs, participants, outcomes, exposures, and association measures. Results: Eleven studies were included: six studies examined distinctive dietary patterns and eating behaviors in SAD patients and five studies explored the efficacy of nutrition interventions for SAD. Vegetarianism and alcoholism were associated with higher SAD prevalence, but normal alcohol intake was not correlated with SAD severity. Compared with non-clinical subjects, SAD patients tended to consume significantly larger dinners and more evening snacks during weekdays and weekends and exhibit a higher frequency of binge eating, external eating, and emotional eating. Additionally, compared to healthy controls, SAD patients presented more cravings for starch-rich food and food with high fiber. However, neither the ingestion of carbohydrate-loaded meals nor Vitamin D/B12 supplementation showed benefit for SAD. Conclusion: Studies suggest that SAD patients may exhibit distinctive diet preferences and eating behaviors, but no current nutrition intervention has demonstrated efficacy for ameliorating SAD symptoms. Further evidence is needed from randomized controlled trials with larger sample sizes and longer durations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA