Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33188775

RESUMEN

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Procesamiento Proteico-Postraduccional , Proteínas tau/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Progresión de la Enfermedad , Humanos , Análisis de Componente Principal , Isoformas de Proteínas/metabolismo
3.
Nat Immunol ; 21(8): 868-879, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690950

RESUMEN

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Animales , Retículo Endoplásmico/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Proteínas del Tejido Nervioso/inmunología , Proteínas Nucleares , Transporte de Proteínas/fisiología
4.
Nature ; 603(7900): 284-289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236981

RESUMEN

Homo sapiens was present in northern Asia by around 40,000 years ago, having replaced archaic populations across Eurasia after episodes of earlier population expansions and interbreeding1-4. Cultural adaptations of the last Neanderthals, the Denisovans and the incoming populations of H. sapiens into Asia remain unknown1,5-7. Here we describe Xiamabei, a well-preserved, approximately 40,000-year-old archaeological site in northern China, which includes the earliest known ochre-processing feature in east Asia, a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, and a bone tool. The cultural assembly of traits at Xiamabei is unique for Eastern Asia and does not correspond with those found at other archaeological site assemblages inhabited by archaic populations or those generally associated with the expansion of H. sapiens, such as the Initial Upper Palaeolithic8-10. The record of northern Asia supports a process of technological innovations and cultural diversification emerging in a period of hominin hybridization and admixture2,3,6,11.


Asunto(s)
Arqueología , Hominidae , Comportamiento del Uso de la Herramienta , Animales , Huesos , China , Historia Antigua , Humanos , Hombre de Neandertal
5.
Proc Natl Acad Sci U S A ; 121(11): e2313123121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437546

RESUMEN

Organized flaking techniques to obtain predetermined stone tools have been traced back to the early Acheulean (also known as mode 2) in Africa and are seen as indicative of the emergence of advanced technical abilities and in-depth planning skills among early humans. Here, we report one of the earliest known examples of prepared core technology in the archaeological record, at the Cenjiawan (CJW) site in the Nihewan basin of China, dated 1.1 Mya. The operational schemes reconstructed from the CJW refit sets, together with shaping patterns observed in the retouched tools, suggest that Nihewan basin toolmakers had the technical abilities of mode 2 hominins, and developed different survival strategies to adapt to local raw materials and environments. This finding predates the previously earliest known prepared core technology from Eurasia by 0.3 My, and the earliest known mode 2 sites in East Asia by a similar amount of time, thus suggesting that hominins with advanced technologies may have migrated into high latitude East Asia as early as 1.1 Mya.


Asunto(s)
Hominidae , Tecnología , Humanos , Animales , Asia Oriental , China , África
6.
Proc Natl Acad Sci U S A ; 120(45): e2205463120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37917793

RESUMEN

Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement without leaking any further information. As an efficient variant of ZKP, noninteractive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir heuristic is essential to a wide spectrum of applications, such as federated learning, blockchain, and social networks. However, the heuristic is typically built upon the random oracle model that makes ideal assumptions about hash functions, which does not hold in reality and thus undermines the security of the protocol. Here, we present a quantum solution to the problem. Instead of resorting to a random oracle model, we implement a quantum randomness service. This service generates random numbers certified by the loophole-free Bell test and delivers them with postquantum cryptography (PQC) authentication. By employing this service, we conceive and implement NIZKP of the three-coloring problem. By bridging together three prominent research themes, quantum nonlocality, PQC, and ZKP, we anticipate this work to inspire more innovative applications that combine quantum information science and the cryptography field.

7.
Plant J ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207906

RESUMEN

Geraniol is one of the most abundant aromatic compounds in fresh tea leaves and contributes to the pleasant odor of tea products. Additionally, it functions as an airborne signal that interacts with other members of the ecosystem. To date, the regulation of the geraniol biosynthesis in tea plants remains to be investigated. In this study, a correlation test of the content of geraniol and its glycosides with gene expression data revealed that nudix hydrolase, CsNudix26, and its transcription factor, CsbHLH133 are involved in geraniol biosynthesis. In vitro enzyme assays and metabolic analyses of genetically modified tea plants confirmed that CsNudix26 is responsible for the formation of geraniol. Yeast one-hybrid, dual-luciferase reporter, and EMSA assays were used to verify the binding of CsbHLH133 to the CsNudix26 promoter. Overexpression of CsbHLH133 in tea leaves enhanced CsNudix26 expression and geraniol accumulation, whereas CsbHLH133 silencing reduced CsNudix26 transcript levels and geraniol content. Interestingly, CsbHLH133-AS, produced by alternative splicing, was discovered and proved to be the primary transcript expressed in response to various environmental stresses. Furthermore, geraniol release was found to be affected by various factors that alter the expression patterns of CsbHLH133 and CsbHLH133-AS. Our findings indicate that distinct transcript splicing patterns of CsbHLH133 regulate geraniol biosynthesis in tea plants in response to different regulatory factors.

8.
Acc Chem Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356824

RESUMEN

ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.

9.
Blood ; 142(10): 903-917, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37319434

RESUMEN

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteína 1 Inhibidora de la Diferenciación , Leucemia Mieloide Aguda , Animales , Ratones , Proteína 7 Similar a la Angiopoyetina/genética , Proteína 7 Similar a la Angiopoyetina/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo
10.
Nano Lett ; 24(19): 5831-5837, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708822

RESUMEN

Single lanthanide (Ln) ion doped upconversion nanoparticles (UCNPs) exhibit great potential for biomolecule sensing and counting. Plasmonic structures can improve the emission efficiency of single UCNPs by modulating the energy transferring process. Yet, achieving robust and large-area single UCNP emission modulation remains a challenge, which obstructs investigation and application of single UCNPs. Here, we present a strategy using metal nanohole arrays (NHAs) to achieve energy-transfer modulation on single UCNPs simultaneously within large-area plasmonic structures. By coupling surface plasmon polaritons (SPPs) with higher-intermediate state (1D2 → 3F3, 1D2 → 3H4) transitions, we achieved a remarkable up to 10-fold enhancement in 800 nm emission, surpassing the conventional approach of coupling SPPs with an intermediate ground state (3H4 → 3H6). We numerically simulate the electrical field distribution and reveal that luminescent enhancement is robust and insensitive to the exact location of particles. It is anticipated that the strategy provides a platform for widely exploring applications in single-particle quantitative biosensing.

11.
J Am Chem Soc ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324953

RESUMEN

Acute lung injury is a devastating illness characterized by severe inflammation mediated by aberrant activation of macrophages, resulting in significant morbidity and mortality, highlighting the urgent need for novel pharmacological targets and drug candidates. In this study, we identified a novel target for regulating inflammation in macrophages and acute lung injury via chemical proteomics and genetics based on a marine alkaloid, naamidine J (NJ). The structures of NJ-related naamidine alkaloids were first confirmed or revised by a combination of quantum chemical calculations and X-ray diffraction analysis. NJ was found as a potential anti-inflammatory agent by screening our compound library, and CSE1L was identified by chemoproteomics as a main cellular target of NJ to inhibit inflammation in macrophages and protect against acute lung injury. Mechanistically, we demonstrated that NJ directly interacted with CSE1L on the sites of His745 and Phe903 and then inhibited the nuclear translocation and transcriptional activity of transcription factor SP1, thereby suppressing inflammation in macrophages and ameliorating acute lung injury. Taken together, these findings have uncovered a novel pharmacological target for the treatment of acute lung injury and have also provided a potential druggable pocket of CSE1L and a lead compound or an available chemical tool from marine sources for investigating CSE1L function and developing novel drug candidates against acute lung injury.

12.
Oncologist ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940446

RESUMEN

BACKGROUNDS: There is little evidence on the safety, efficacy, and survival benefit of restarting immune checkpoint inhibitors (ICI) in patients with cancer after discontinuation due to immune-related adverse events (irAEs) or progressive disease (PD). Here, we performed a meta-analysis to elucidate the possible benefits of ICI rechallenge in patients with cancer. METHODS: Systematic searches were conducted using PubMed, Embase, and Cochrane Library databases. The objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and incidence of irAEs were the outcomes of interest. RESULTS: Thirty-six studies involving 2026 patients were analyzed. ICI rechallenge was associated with a lower incidence of all-grade (OR, 0.05; 95%CI, 0.02-0.13, P < .05) and high-grade irAEs (OR, 0.37; 95%CI, 0.21-0.64, P < .05) when compared with initial ICI treatment. Though no significant difference was observed between rechallenge and initial treatment regarding ORR (OR, 0.69; 95%CI, 0.39-1.20, P = .29) and DCR (OR, 0.85; 95%CI, 0.51-1.40, P = 0.52), patients receiving rechallenge had improved PFS (HR, 0.56; 95%CI, 0.43-0.73, P < .05) and OS (HR, 0.55; 95%CI, 0.43-0.72, P < .05) than those who discontinued ICI therapy permanently. Subgroup analysis revealed that for patients who stopped initial ICI treatment because of irAEs, rechallenge showed similar safety and efficacy with initial treatment, while for patients who discontinued ICI treatment due to PD, rechallenge caused a significant increase in the incidence of high-grade irAEs (OR, 4.97; 95%CI, 1.98-12.5, P < .05) and a decrease in ORR (OR, 0.48; 95%CI, 0.24-0.95, P < .05). CONCLUSION: ICI rechallenge is generally an active and feasible strategy that is associated with relative safety, similar efficacy, and improved survival outcomes. Rechallenge should be considered individually with circumspection, and randomized controlled trials are required to confirm these findings.

13.
Eur J Immunol ; 53(1): e2250011, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36250416

RESUMEN

Gasdermin D (GSDMD) is a classical molecule involved in pyroptosis. It has been reported to be cleaved into N-terminal fragments to form pores in the neutrophil membrane and promote the release of neutrophil extracellular traps (NETs). However, it remains unclear if GSDMD is involved in neutrophil regulation and NET release during ARDS. The role of neutrophil GSDMD in the development of ARDS was investigated in a murine model of ARDS induced by lipopolysaccharide (LPS) using the neutrophil specific GSDMD-deficient mice. The neutrophil GSDMD cleavage and its relationship with NETosis were also explored in ARDS patients. The cleavage of GSDMD in neutrophils from ARDS patients and mice was upregulated. Inhibition of GSDMD by genetic knockout or inhibitors resulted in reduced production of NET both in vivo and in vitro, and attenuation of LPS-induced lung injury. Moreover, in vitro experiments showed that the inhibition of GSDMD attenuated endothelial injury co-cultured with neutrophils from ARDS patients, while extrinsic NETs reversed the protective effect of GSDMD inhibition. Collectively, our data suggest that the neutrophil GSDMD cleavage is crucial in NET release during ARDS. The NET release maintained by cleaved GSDMD in neutrophils may be a key event in the development of ARDS.


Asunto(s)
Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Ratones , Animales , Lipopolisacáridos , Neutrófilos , Piroptosis
14.
J Transl Med ; 22(1): 41, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200523

RESUMEN

As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent discoveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health (e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation, etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new target, protein lactylation, which may be a "double-edged sword" of human health and diseases. The main purpose of this review was to describe how protein lactylation acts in multiple physiological and pathological processes and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.


Asunto(s)
Ácido Láctico , Osteogénesis , Humanos , Diferenciación Celular , Inflamación , Procesamiento Proteico-Postraduccional
15.
Phys Rev Lett ; 133(6): 066902, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178433

RESUMEN

Charge-order states of broken symmetry, such as charge density wave (CDW), are able to induce exceptional physical properties, however, the precise understanding of the underlying physics is still elusive. Here, we combine fluctuational electrodynamics and density functional theory to reveal an unconventional thermophotonic effect in CDW-bearing TiSe_{2}, referred to as thermophotonic-CDW (tp-CDW). The interplay of plasmon polariton and CDW electron excitations give rise to an anomalous negative temperature dependency in thermal photons transport, offering an intuitive fingerprint for a transformation of the electron order. Additionally, the demonstrated nontrivial features of tp-CDW transition hold promise for a controllable manipulation of heat flow, which could be extensively utilized in various fields such as thermal science and electron dynamics, as well as in next-generation energy devices.

16.
Chemistry ; 30(53): e202402200, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39004611

RESUMEN

Severe shuttle effect of soluble polysulfides and sluggish redox kinetics have been thought of as the critical issues hindering the extensive applications of lithium-sulfur batteries (LSBs). Herein, one-dimensional boron nitride (1D BN) fibers with abundant pores and sufficient N-vacancy defects were synthesized using a thermal crystallization following a pre-condensation step. The 1D structure of BN facilitates unblocked ions diffusion pathways during charge/discharge cycles. The embedded pores within the polar BN strengthen the immobilization of polysulfides via both physical confinement and chemical interaction. Moreover, the highly exposed active surface area and intentionally created N-vacancy sites substantially promote reaction kinetics by lowering the energy barriers of the rate-limiting steps. After incorporating with conductive carbon networks and elemental S, the as-prepared S/Nv-BN@CBC cathode of LSBs deliver an initial discharge capacity of up to 1347 mAh g-1 at 200 mA g-1, while maintaining a low decay rate of 0.03 % per cycle over 1000 cycles at 1600 mA g-1. This work offers an effective strategy to mitigate the shuttle effect and highlights the significant potential of defect-engineered BN in accelerating the reaction kinetics of LSBs.

17.
Chemistry ; 30(39): e202401377, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38738789

RESUMEN

(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.

18.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561648

RESUMEN

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Asunto(s)
Radiómica , Neoplasias Gástricas , Humanos , Estudios de Cohortes , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Estudios Retrospectivos , Inestabilidad de Microsatélites , Inmunoterapia , Tomografía Computarizada por Rayos X , Inmunoglobulinas
19.
FASEB J ; 37(9): e23140, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584647

RESUMEN

The development of acute liver failure (ALF) is dependent on its local inducer. Inflammation is a high-frequency and critical factor that accelerates hepatocyte death and liver failure. In response to injury stress, the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages is promoted by both oxygen-dependent and oxygen-independent mechanisms, thus promoting the expression and secretion of the cytokine interleukin-1ß (IL-1ß). IL-1ß further induces hepatocyte apoptosis or necrosis by signaling through the receptor (IL-1R) on hepatocyte. HIF-1α knockout in macrophages or IL-1R knockout in hepatocytes protects against liver failure. However, whether HIF-1α inhibition in macrophages has a protective role in ALF is unclear. In this study, we revealed that the small molecule HIF-1α inhibitor PX-478 inhibits the expression and secretion of IL-1ß, but not tumor necrosis factor α (TNFα), in bone marrow-derived macrophages (BMDMs). PX-478 pretreatment alleviates liver injury in LPS/D-GalN-induced ALF mice by decreasing the hepatic inflammatory response. In addition, preventive or therapeutic administration of PX-478 combined with TNFα neutralizing antibody markedly improved LPS/D-GalN-induced ALF. Taken together, our data suggest that PX-478 administration leads to HIF-1α inhibition and decreased IL-1ß secretion in macrophages, which represents a promising therapeutic strategy for inflammation-induced ALF.


Asunto(s)
Fallo Hepático Agudo , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/patología , Macrófagos/metabolismo , Inflamación/metabolismo , Necrosis/metabolismo , Oxígeno/metabolismo
20.
Mol Cell Biochem ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264395

RESUMEN

The fundamental pathophysiological mechanism in the progression of chronic heart failure following acute myocardial infarction (AMI) is ventricular remodeling, in which innate and adaptive immunity both play critical roles. Myeloid-derived suppressor cells (MDSCs) have been demonstrated to function in a range of pathological conditions, such as infections, inflammation, autoimmune diseases, and tumors. However, it is unclear how MDSCs contribute to cardiac remodeling following AMI. This study aimed to identify the function and underlying mechanism of MDSCs in controlling cardiac remodeling following AMI. Following AMI in mice, MDSCs frequencies changed dynamically, considerably increased on day 7 in blood, spleens, lymph nodes and hearts, and decreased afterwards. Consistently, mice with AMI displayed enhanced cardiac function on day 14 post-AMI, reduced infract size and higher survival rates on day 28 post-AMI following the adoptive transfer of MDSCs. Furthermore, MDSCs inhibited the inflammatory response by decreasing pro-inflammatory cytokine (TNF-α, IL-17, Cxcl-1, and Cxcl-2) expression, up-regulating anti-inflammatory cytokine (TGF-ß1, IL-10, IL-4, and IL-13) expression, reducing CD3+ T cell infiltration in the infarcted heart and enhancing M2 macrophage polarization. Mechanistically, MDSCs improved the release of anti-inflammatory factors (TGF-ß1 and IL-10) and decreased the injury of LPS-induced cardiomyocytes in vitro in a manner dependent on cell-cell contact. Importantly, blockade of IL-10 partially abolished the cardioprotective role of MDSCs. This study found that MDSCs contributed to the restoration of cardiac function and alleviation of adverse cardiac remodeling after AMI possibly by inhibiting inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA