Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 105(6): 1222-1236, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31761296

RESUMEN

Muscle bulk in adult healthy humans is highly variable even after height, age, and sex are accounted for. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-aged (aged 38-49 years) individuals from the UK Biobank (UKB), we found 182 loci associated with ALM (p < 5 × 10-8). We replicated associations for 78% of these loci (p < 5 × 10-8) with ALM in a population of 181,862 elderly (aged 60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J); this GWAS identified 23 quantitative trait loci. Thirty-eight positional candidates distributed across five loci overlapped between the two species. In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.


Asunto(s)
Composición Corporal/genética , Proteínas de Unión al Calcio/genética , Estudio de Asociación del Genoma Completo , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Delgadez/genética , Adulto , Anciano , Envejecimiento , Animales , Peso Corporal , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Sitios de Carácter Cuantitativo
3.
Plant Physiol ; 174(4): 2261-2273, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28615345

RESUMEN

Plant respiration can theoretically be fueled by and dependent upon an array of central metabolism components; however, which ones are responsible for the quantitative variation found in respiratory rates is unknown. Here, large-scale screens revealed 2-fold variation in nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana) natural accession collection grown under common favorable conditions. RN variation was mostly maintained in the absence of genetic variation, which emphasized the low heritability of RN and its plasticity toward relatively small environmental differences within the sampling regime. To pursue metabolic explanations for leaf RN variation, parallel metabolite level profiling and assays of total protein and starch were performed. Within an accession, RN correlated strongly with stored carbon substrates, including starch and dicarboxylic acids, as well as sucrose, major amino acids, shikimate, and salicylic acid. Among different accessions, metabolite-RN correlations were maintained with protein, sucrose, and major amino acids but not stored carbon substrates. A complementary screen of the effect of exogenous metabolites and effectors on leaf RN revealed that (1) RN is stimulated by the uncoupler FCCP and high levels of substrates, demonstrating that both adenylate turnover and substrate supply can limit leaf RN, and (2) inorganic nitrogen did not stimulate RN, consistent with limited nighttime nitrogen assimilation. Simultaneous measurements of RN and protein synthesis revealed that these processes were largely uncorrelated in mature leaves. These results indicate that differences in preceding daytime metabolic activities are the major source of variation in mature leaf RN under favorable controlled conditions.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Oscuridad , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Arabidopsis/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Respiración de la Célula/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ecotipo , Cromatografía de Gases y Espectrometría de Masas , Metaboloma/efectos de los fármacos , Modelos Biológicos , Consumo de Oxígeno/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Factores de Tiempo
4.
PLoS Genet ; 11(12): e1005713, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658939

RESUMEN

Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512-50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.p.; DBA/2J < C57BL/6J)-a non-contingent, drug-induced behavior that is associated with stimulation of the dopaminergic reward circuitry. This chromosomal region contained only two protein coding genes-heterogeneous nuclear ribonucleoprotein, H1 (Hnrnph1) and RUN and FYVE domain-containing 1 (Rufy1). Transcriptome analysis via mRNA sequencing in the striatum implicated a neurobiological mechanism involving a reduction in mesolimbic innervation and striatal neurotransmission. For instance, Nr4a2 (nuclear receptor subfamily 4, group A, member 2), a transcription factor crucial for midbrain dopaminergic neuron development, exhibited a 2.1-fold decrease in expression (DBA/2J < C57BL/6J; p 4.2 x 10-15). Transcription activator-like effector nucleases (TALENs)-mediated introduction of frameshift deletions in the first coding exon of Hnrnph1, but not Rufy1, recapitulated the reduced methamphetamine behavioral response, thus identifying Hnrnph1 as a quantitative trait gene for methamphetamine sensitivity. These results define a novel contribution of Hnrnph1 to neurobehavioral dysfunction associated with dopaminergic neurotransmission. These findings could have implications for understanding the genetic basis of methamphetamine addiction in humans and the development of novel therapeutics for prevention and treatment of substance abuse and possibly other psychiatric disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Actividad Motora/genética , Sitios de Carácter Cuantitativo/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Mapeo Cromosómico , Neuronas Dopaminérgicas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Masculino , Metanfetamina/administración & dosificación , Ratones , Actividad Motora/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN Mensajero/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
5.
Addict Biol ; 19(4): 552-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23231598

RESUMEN

The rewarding property of opioids likely contributes to their abuse potential. Therefore, determining the genetic basis of opioid reward could aid in understanding the neurobiological mechanisms of opioid addiction, provided that it is a heritable trait. Here, we characterized the rewarding property of the widely abused prescription opioid oxycodone (OXY) in the conditioned place preference (CPP) assay using LG/J and SM/J parental inbred mouse strains and 17 parent-offspring families of a LG/J × SM/J F47 /F48 advanced intercross line (AIL). Following OXY training (5 mg/kg, i.p.), SM/J mice and AIL mice, but not LG/J mice, showed an increase in preference for the OXY-paired side, suggesting a genetic basis for OXY-CPP. SM/J mice showed greater locomotor activity than LG/J mice in response to both saline and OXY. LG/J, SM/J, and AIL mice all exhibited robust OXY-induced locomotor sensitization. Narrow-sense heritability (h(2) ) estimates of the phenotypes using linear regression and maximum likelihood estimation showed good agreement (r = 0.91). OXY-CPP was clearly not a heritable trait whereas drug-free- and OXY-induced locomotor activity and sensitization were significantly and sometimes highly heritable (h(2) = 0.30-0.84). Interestingly, the number of transitions between the saline- and OXY-paired sides emerged as a reliably heritable trait following OXY training (h(2) = 0.46-0.66) and could represent a genetic component of drug-seeking behavior. Thus, although OXY-CPP does not appear to be amenable to genome-wide quantitative trait locus mapping, this protocol will be useful for mapping other traits potentially relevant to opioid abuse.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Conducta Animal/efectos de los fármacos , Predisposición Genética a la Enfermedad/genética , Trastornos Relacionados con Opioides/genética , Oxicodona/administración & dosificación , Recompensa , Animales , Condicionamiento Operante/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Femenino , Funciones de Verosimilitud , Masculino , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Trastornos Relacionados con Opioides/psicología , Fenotipo , Cloruro de Sodio/administración & dosificación
6.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915500

RESUMEN

Age-related hearing impairment is the most common cause of hearing loss and is one of the most prevalent conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors. The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic basis of age-related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of 1, 6, and 10 months. We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with ARHL that contained potential candidate genes, including Dnah11, Rapgef5, Cpne4, Prkag2, and Nek11. We confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in mice; this makes Prkag2 a candidate gene for further studies. This work helps to identify genetic risk factors for ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.

7.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071405

RESUMEN

Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.

8.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38559127

RESUMEN

Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.

9.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732200

RESUMEN

Behavioral diversity is critical for population fitness. Individual differences in risk-taking are observed across species, but underlying genetic mechanisms and conservation are largely unknown. We examined dark avoidance in larval zebrafish, a motivated behavior reflecting an approach-avoidance conflict. Brain-wide calcium imaging revealed significant neural activity differences between approach-inclined versus avoidance-inclined individuals. We used a population of ∼6,000 to perform the first genome-wide association study (GWAS) in zebrafish, which identified 34 genomic regions harboring many genes that are involved in synaptic transmission and human psychiatric diseases. We used CRISPR to study several causal genes: serotonin receptor-1b ( htr1b ), nitric oxide synthase-1 ( nos1 ), and stress-induced phosphoprotein-1 ( stip1 ). We further identified 52 conserved elements containing 66 GWAS significant variants. One encoded an exonic regulatory element that influenced tissue-specific nos1 expression. Together, these findings reveal new genetic loci and establish a powerful, scalable animal system to probe mechanisms underlying motivation, a critical dimension of psychiatric diseases.

10.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36974931

RESUMEN

Power analyses are often used to determine the number of animals required for a genome-wide association study (GWAS). These analyses are typically intended to estimate the sample size needed for at least 1 locus to exceed a genome-wide significance threshold. A related question that is less commonly considered is the number of significant loci that will be discovered with a given sample size. We used simulations based on a real data set that consisted of 3,173 male and female adult N/NIH heterogeneous stock rats to explore the relationship between sample size and the number of significant loci discovered. Our simulations examined the number of loci identified in subsamples of the full data set. The subsampling analysis was conducted for 4 traits with low (0.15 ± 0.03), medium (0.31 ± 0.03 and 0.36 ± 0.03), and high (0.46 ± 0.03) SNP-based heritabilities. For each trait, we subsampled the data 100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an exponential increase in the number of significant loci with larger sample sizes. Our results are consistent with similar observations in human GWAS and imply that future rodent GWAS should use sample sizes that are significantly larger than those needed to obtain a single significant result.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Masculino , Femenino , Humanos , Animales , Ratas , Estudio de Asociación del Genoma Completo/métodos , Tamaño de la Muestra , Polimorfismo de Nucleótido Simple , Fenotipo
11.
Cell Rep ; 42(8): 112873, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527041

RESUMEN

A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.


Asunto(s)
Índice de Masa Corporal , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Animales , Ratas , Tamaño Corporal , Ratones , Especificidad de la Especie
12.
Mamm Genome ; 23(5-6): 356-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22322356

RESUMEN

Red blood cells are essential for oxygen transport and other physiologic processes. Red cell characteristics are typically determined by complete blood counts which measure parameters such as hemoglobin levels and mean corpuscular volumes; these parameters reflect the quality and quantity of red cells in the circulation at any particular moment. To identify the genetic determinants of red cell parameters, we performed genome-wide association analysis on LG/J×SM/J F2 and F34 advanced intercross lines using single nucleotide polymorphism genotyping and a novel algorithm for mapping in the combined populations. We identified significant quantitative trait loci for red cell parameters on chromosomes 6, 7, 8, 10, 12, and 17; our use of advanced intercross lines reduced the quantitative trait loci interval width from 1.6- to 9.4-fold. Using the genomic sequences of LG/J and SM/J mice, we identified nonsynonymous coding single nucleotide polymorphisms in candidate genes residing within quantitative trait loci and performed sequence alignments and molecular modeling to gauge the potential impact of amino acid substitutions. These results should aid in the identification of genes critical for red cell physiology and metabolism and demonstrate the utility of advanced intercross lines in uncovering genetic determinants of inherited traits.


Asunto(s)
Eritrocitos/metabolismo , Proteínas/genética , Sitios de Carácter Cuantitativo , Secuencia de Aminoácidos , Animales , Cruzamientos Genéticos , Eritrocitos/química , Femenino , Humanos , Endogamia , Masculino , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Proteínas/química , Proteínas/metabolismo , Alineación de Secuencia
13.
Behav Genet ; 42(3): 437-48, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22237917

RESUMEN

Fear conditioning (FC) may provide a useful model for some components of post-traumatic stress disorder (PTSD). We used a C57BL/6J × DBA/2J F(2) intercross (n = 620) and a C57BL/6J × DBA/2J F(8) advanced intercross line (n = 567) to fine-map quantitative trait loci (QTL) associated with FC. We conducted an integrated genome-wide association analysis in QTLRel and identified five highly significant QTL affecting freezing to context as well as four highly significant QTL associated with freezing to cue. The average percent decrease in QTL width between the F(2) and the integrated analysis was 59.2%. Next, we exploited bioinformatic sequence and expression data to identify candidate genes based on the existence of non-synonymous coding polymorphisms and/or expression QTLs. We identified numerous candidate genes that have been previously implicated in either fear learning in animal models (Bcl2, Btg2, Dbi, Gabr1b, Lypd1, Pam and Rgs14) or PTSD in humans (Gabra2, Oprm1 and Trkb); other identified genes may represent novel findings. The integration of F(2) and AIL data maintains the advantages of studying FC in model organisms while significantly improving resolution over previous approaches.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/psicología , Estudio de Asociación del Genoma Completo , Estimulación Acústica , Animales , Biología Computacional , Cruzamientos Genéticos , Señales (Psicología) , Interpretación Estadística de Datos , Electrochoque , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
14.
Front Psychiatry ; 13: 790566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237186

RESUMEN

Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.

15.
Front Genet ; 13: 1003074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712851

RESUMEN

Common genetic factors likely contribute to multiple psychiatric diseases including mood and substance use disorders. Certain stable, heritable traits reflecting temperament, termed externalizing or internalizing, play a large role in modulating vulnerability to these disorders. To model these heritable tendencies, we selectively bred rats for high and low exploration in a novel environment [bred High Responders (bHR) vs. Low Responders (bLR)]. To identify genes underlying the response to selection, we phenotyped and genotyped 538 rats from an F2 cross between bHR and bLR. Several behavioral traits show high heritability, including the selection trait: exploratory locomotion (EL) in a novel environment. There were significant phenotypic and genetic correlations between tests that capture facets of EL and anxiety. There were also correlations with Pavlovian conditioned approach (PavCA) behavior despite the lower heritability of that trait. Ten significant and conditionally independent loci for six behavioral traits were identified. Five of the six traits reflect different facets of EL that were captured by three behavioral tests. Distance traveled measures from the open field and the elevated plus maze map onto different loci, thus may represent different aspects of novelty-induced locomotor activity. The sixth behavioral trait, number of fecal boli, is the only anxiety-related trait mapping to a significant locus on chromosome 18 within which the Pik3c3 gene is located. There were no significant loci for PavCA. We identified a missense variant in the Plekhf1 gene on the chromosome 1:95 Mb QTL and Fancf and Gas2 as potential candidate genes that may drive the chromosome 1:107 Mb QTL for EL traits. The identification of a locomotor activity-related QTL on chromosome 7 encompassing the Pkhd1l1 and Trhr genes is consistent with our previous finding of these genes being differentially expressed in the hippocampus of bHR vs. bLR rats. The strong heritability coupled with identification of several loci associated with exploratory locomotion and emotionality provide compelling support for this selectively bred rat model in discovering relatively large effect causal variants tied to elements of internalizing and externalizing behaviors inherent to psychiatric and substance use disorders.

16.
Front Genet ; 13: 1029058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36793389

RESUMEN

Elevated intraocular pressure (IOP) is influenced by environmental and genetic factors. Increased IOP is a major risk factor for most types of glaucoma, including primary open angle glaucoma (POAG). Investigating the genetic basis of IOP may lead to a better understanding of the molecular mechanisms of POAG. The goal of this study was to identify genetic loci involved in regulating IOP using outbred heterogeneous stock (HS) rats. HS rats are a multigenerational outbred population derived from eight inbred strains that have been fully sequenced. This population is ideal for a genome-wide association study (GWAS) owing to the accumulated recombinations among well-defined haplotypes, the relatively high allele frequencies, the accessibility to a large collection of tissue samples, and the large allelic effect size compared to human studies. Both male and female HS rats (N = 1,812) were used in the study. Genotyping-by-sequencing was used to obtain ∼3.5 million single nucleotide polymorphisms (SNP) from each individual. SNP heritability for IOP in HS rats was 0.32, which agrees with other studies. We performed a GWAS for the IOP phenotype using a linear mixed model and used permutation to determine a genome-wide significance threshold. We identified three genome-wide significant loci for IOP on chromosomes 1, 5, and 16. Next, we sequenced the mRNA of 51 whole eye samples to find cis-eQTLs to aid in identification of candidate genes. We report 5 candidate genes within those loci: Tyr, Ctsc, Plekhf2, Ndufaf6 and Angpt2. Tyr, Ndufaf6 and Angpt2 genes have been previously implicated by human GWAS of IOP-related conditions. Ctsc and Plekhf2 genes represent novel findings that may provide new insight into the molecular basis of IOP. This study highlights the efficacy of HS rats for investigating the genetics of elevated IOP and identifying potential candidate genes for future functional testing.

17.
Mamm Genome ; 22(9-10): 563-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21761260

RESUMEN

The present study measured variation in body weight using a combined analysis in an F(2) intercross and an F(34) advanced intercross line (AIL). Both crosses were derived from inbred LG/J and SM/J mice, which were selected for large and small body size prior to inbreeding. Body weight was measured at 62 (± 5) days of age. Using an integrated GWAS and forward model selection approach, we identified 11 significant QTLs that affected body weight on ten different chromosomes. With these results we developed a full model that explained over 18% of the phenotypic variance. The median 1.5-LOD support interval was 5.55 Mb, which is a significant improvement over most prior body weight QTLs. We identified nonsynonymous coding SNPs between LG/J and SM/J mice in order to further narrow the list of candidate genes. Three of the genes with nonsynonymous coding SNPs (Rad23b, Stk33, and Anks1b) have been associated with adiposity, waist circumference, and body mass index in human GWAS, thus providing evidence that these genes may underlie our QTLs. Our results demonstrate that a relatively small number of loci contribute significantly to the phenotypic variance in body weight, which is in marked contrast to the situation in humans. This difference is likely to be the result of strong selective pressure and the simplified genetic architecture, both of which are important advantages of our system.


Asunto(s)
Alelos , Peso Corporal/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Adiposidad/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
18.
Mamm Genome ; 22(9-10): 530-43, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21732194

RESUMEN

Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G(3) animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.


Asunto(s)
Agua Corporal , Grasas/análisis , Músculo Esquelético/química , Sitios de Carácter Cuantitativo , Animales , Pesos y Medidas Corporales , Femenino , Masculino , Ratones , Músculo Esquelético/metabolismo , Fenotipo
19.
BMC Genet ; 12: 66, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21794153

RESUMEN

BACKGROUND: Existing software for quantitative trait mapping is either not able to model polygenic variation or does not allow incorporation of more than one genetic variance component. Improperly modeling the genetic relatedness among subjects can result in excessive false positives. We have developed an R package, QTLRel, to enable more flexible modeling of genetic relatedness as well as covariates and non-genetic variance components. RESULTS: We have successfully used the package to analyze many datasets, including F34 body weight data that contains 688 individuals genotyped at 3105 SNP markers and identified 11 QTL. It took 295 seconds to estimate variance components and 70 seconds to perform the genome scan on an Linux machine equipped with a 2.40GHz Intel(R) Core(TM)2 Quad CPU. CONCLUSIONS: QTLRel provides a toolkit for genome-wide association studies that is capable of calculating genetic incidence matrices from pedigrees, estimating variance components, performing genome scans, incorporating interactive covariates and genetic and non-genetic variance components, as well as other functionalities such as multiple-QTL mapping and genome-wide epistasis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Linaje , Programas Informáticos , Variación Genética , Humanos , Modelos Estadísticos , Sitios de Carácter Cuantitativo
20.
G3 (Bethesda) ; 10(3): 951-965, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31974095

RESUMEN

There has been extensive discussion of the "Replication Crisis" in many fields, including genome-wide association studies (GWAS). We explored replication in a mouse model using an advanced intercross line (AIL), which is a multigenerational intercross between two inbred strains. We re-genotyped a previously published cohort of LG/J x SM/J AIL mice (F34; n = 428) using a denser marker set and genotyped a new cohort of AIL mice (F39-43; n = 600) for the first time. We identified 36 novel genome-wide significant loci in the F34 and 25 novel loci in the F39-43 cohort. The subset of traits that were measured in both cohorts (locomotor activity, body weight, and coat color) showed high genetic correlations, although the SNP heritabilities were slightly lower in the F39-43 cohort. For this subset of traits, we attempted to replicate loci identified in either F34 or F39-43 in the other cohort. Coat color was robustly replicated; locomotor activity and body weight were only partially replicated, which was inconsistent with our power simulations. We used a random effects model to show that the partial replications could not be explained by Winner's Curse but could be explained by study-specific heterogeneity. Despite this heterogeneity, we performed a mega-analysis by combining F34 and F39-43 cohorts (n = 1,028), which identified four novel loci associated with locomotor activity and body weight. These results illustrate that even with the high degree of genetic and environmental control possible in our experimental system, replication was hindered by study-specific heterogeneity, which has broad implications for ongoing concerns about reproducibility.


Asunto(s)
Cruzamientos Genéticos , Estudio de Asociación del Genoma Completo , Pelaje de Animal , Animales , Peso Corporal , Color , Femenino , Genotipo , Locomoción/efectos de los fármacos , Masculino , Metanfetamina/farmacología , Ratones Endogámicos , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA