Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Mater ; 23(4): 570-576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38297141

RESUMEN

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.

2.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022240

RESUMEN

The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank-Kasper σ superlattices.

3.
Chemistry ; 29(63): e202302352, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584964

RESUMEN

In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.

4.
Macromol Rapid Commun ; 44(1): e2200216, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35557023

RESUMEN

Three sets of polyoxometalate (POM)-based amphiphilic hybrid macromolecules with different rigidity in their organic tails are used as models to understand the effect of molecular rigidity on their possible self-recognition feature during self-assembly processes. Self-recognition is achieved in the mixed solution of two structurally similar, sphere-rigid T-shape-linked oligofluorene(TOF4 ) rod amphiphiles, with the hydrophilic clusters being Anderson (Anderson-TOF4 ) and Dawson (Dawson-TOF4 ), respectively. Anderson-TOF4 is observed to self-assemble into onion-like multilayer structures and Dawson-TOF4 forms multilayer vesicles. The self-assembly is controlled by the interdigitation of hydrophobic rods and the counterion-mediated attraction among charged hydrophilic inorganic clusters. When the hydrophobic blocks are less rigid, e.g., partially rigid polystyrene and fully flexible alkyl chains, self-recognition is not observed, attributing to the flexible conformation of hydrophobic molecules in the solvophobic domain. This study reveals that the self-recognition among amphiphiles can be achieved by the geometrical limitation of the supramolecular structure due to the rigidity of solvophobic domains.


Asunto(s)
Micelas , Sustancias Macromoleculares/química , Conformación Molecular , Interacciones Hidrofóbicas e Hidrofílicas
5.
Angew Chem Int Ed Engl ; 61(28): e202203433, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35478477

RESUMEN

The hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically. In the present work, we propose the concept of unimolecular nanoparticles (UMNPs). The UMNPs act as the supramolecular motif and directly pack into the superlattices. A highly branched giant molecule is presented. We systematically explore its conformations and the superlattice of this giant molecule. Moreover, intriguing complex phases are discovered when blending this UMNP with other conventional giant molecules. These binary mixtures provide direct evidence to support our previously proposed self-sorting process in the self-assembly of "soft alloys". The concept of UMNPs offers a unique approach toward more precise regulation of self-assembled superlattices in soft matter.

6.
Angew Chem Int Ed Engl ; 61(19): e202200637, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174943

RESUMEN

The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.

7.
J Am Chem Soc ; 143(37): 15319-15325, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34506155

RESUMEN

Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein "external triggers" often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an "internal trigger" for pathway selection in multicomponent crystallization. We discovered a "spontaneous" crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal "spontaneously" liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

8.
J Am Chem Soc ; 143(51): 21613-21621, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913335

RESUMEN

Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.

9.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387467

RESUMEN

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

10.
Nano Lett ; 20(12): 8647-8653, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164515

RESUMEN

Here we reported a hierarchical self-assembly approach toward well-defined superlattices in supramolecular liquid crystals by fullerene-based sphere-cone block molecules. The fullerenes crystallize to form monolayer nanosheets intercalated by the attached soft hydrocarbon cones. The frustration caused by cross-sectional area mismatch between the spheres and the somewhat oversize cones leads to a unique lamellar superlattice whereby each stack of six pairs of alternating sphere-cone sublayers is followed by a cone double layer. While such areal mismatch problems in soft matter are usually solved by interface curvature, the lamellar superlattice solution is best suited to systems with rigid layers. Meanwhile, formation of the superlattice significantly improves the material's transient electron conductivity, with the maximum value being among the highest for π-conjugated organic materials. The design principle of solving steric frustration by forming a superlattice opens a new avenue toward self-assembled optoelectronic materials.

11.
Angew Chem Int Ed Engl ; 60(41): 22212-22218, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34375017

RESUMEN

The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost-effective impact-resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one-dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra-stretchability, high rate-dependent strength, superior impact-resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co-existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster-based materials.

12.
Angew Chem Int Ed Engl ; 60(9): 4894-4900, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33210413

RESUMEN

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron (MOP). Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

13.
Angew Chem Int Ed Engl ; 60(4): 2024-2029, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33111472

RESUMEN

Despite the significant advances in creating assembled structures from polymers, engineering the assembly of polymeric materials into framework structures remains an outstanding challenge. In this work, we present a facile strategy to construct polymeric molecular frameworks through the assembly of T-shape polymer-rod-sphere amphiphiles in the bulk state. Various frameworks are yielded as a result of delicate interplays among three components of the T-shape amphiphiles. The internal structure of frameworks was revealed by combining experimental investigations and computational simulations. The frameworks display good solution-processability, thermal stability, and uniform pore-forming capability, which endow the resultant frameworks with great potential in scalable fabrications.

14.
Chemistry ; 26(30): 6741-6756, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-31961977

RESUMEN

Hierarchical structures are important for transferring and amplifying molecular functions to macroscopic properties of materials. In this regard, rodlike molecules have emerged as one of the most promising molecular building blocks to construct functional materials. Although the self-assembly of conventional molecules containing rodlike components generally results in nematic or layered smectic phases, due to the preferred parallel arrangements of rodlike components, extensive efforts have revealed that rational molecular design provides a versatile platform to engineer rich self-assembled structures. Herein, first successes achieved in polyphilic liquid crystals and rod-coil block systems are summarized. Special attention is paid to recent progress in the conjugation of rodlike building blocks with other molecular building blocks through the molecular Lego approach. Rod-based giant surfactants, sphere-rod conjugates, and dendritic rodlike molecules are covered. Future perspectives of the self-assembly of molecules containing rodlike components are also provided.

15.
Macromol Rapid Commun ; 41(1): e1900534, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31747084

RESUMEN

Microscopic structures have a significant influence on the properties of ceramics. The development of macromolecular self-assembly has allowed for control over microscopic structures of ceramics to prepare ceramics with diverse compositions and ordered nanostructures. Herein, recent progress in the preparation of ceramics with periodically ordered nanostructures guided by phase-separated macromolecules are reviewed, which can be summarized as a general strategy termed the "macromolecule-guided strategy." Moreover, two different subcategories, namely, the macromolecule-templated method and the macromolecule-precursor method, are illustrated. In the former method, amphiphilic macromolecules are used as templates to guide the assembly of inorganic species into ordered nanostructures, which are subsequently converted into ceramics; in the latter method, amphiphilic macromolecules containing non-volatile elements are used as the single-source precursors for ordered ceramics. It is believed that the unique diversity and tunable features of macromolecular self-assembly might offer unprecedented opportunities in the development of functional ceramics for various applications.


Asunto(s)
Cerámica/química , Sustancias Macromoleculares/química , Nanoestructuras/química , Geles/química , Metales/química , Óxidos/química , Polímeros/química , Porosidad , Silicio/química
16.
Angew Chem Int Ed Engl ; 59(42): 18563-18571, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32656991

RESUMEN

Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.

17.
Angew Chem Int Ed Engl ; 59(13): 5226-5234, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31957938

RESUMEN

How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.

18.
Soft Matter ; 15(36): 7108-7116, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31482930

RESUMEN

In biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation. Alternatively, in the past few years we have developed a unique giant molecule system based on molecular nanoparticles, in which the above-mentioned molecular parameters, as well as interactions, are precisely defined and controlled. These molecules could self-assemble into a myriad of unconventional and unique structures in the bulk, thin films, and solution. Giant molecules thus offer a robust platform to manipulate the hierarchical structures via precise and modular assemblies of building blocks in an amplified size level compared with small molecules. It has been found that they are not only scientifically intriguing, but also technologically relevant.


Asunto(s)
Sustancias Macromoleculares/química , Nanopartículas/química , Dimerización , Estructura Molecular , Ácidos Nucleicos/química , Tamaño de la Partícula , Transición de Fase , Polímeros/química , Propiedades de Superficie , Temperatura
19.
Proc Natl Acad Sci U S A ; 113(50): 14195-14200, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911786

RESUMEN

Frank-Kasper (F-K) and quasicrystal phases were originally identified in metal alloys and only sporadically reported in soft materials. These unconventional sphere-packing schemes open up possibilities to design materials with different properties. The challenge in soft materials is how to correlate complex phases built from spheres with the tunable parameters of chemical composition and molecular architecture. Here, we report a complete sequence of various highly ordered mesophases by the self-assembly of specifically designed and synthesized giant surfactants, which are conjugates of hydrophilic polyhedral oligomeric silsesquioxane cages tethered with hydrophobic polystyrene tails. We show that the occurrence of these mesophases results from nanophase separation between the heads and tails and thus is critically dependent on molecular geometry. Variations in molecular geometry achieved by changing the number of tails from one to four not only shift compositional phase boundaries but also stabilize F-K and quasicrystal phases in regions where simple phases of spheroidal micelles are typically observed. These complex self-assembled nanostructures have been identified by combining X-ray scattering techniques and real-space electron microscopy images. Brownian dynamics simulations based on a simplified molecular model confirm the architecture-induced sequence of phases. Our results demonstrate the critical role of molecular architecture in dictating the formation of supramolecular crystals with "soft" spheroidal motifs and provide guidelines to the design of unconventional self-assembled nanostructures.

20.
Angew Chem Int Ed Engl ; 58(34): 11879-11885, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31210375

RESUMEN

Self-assembled nanostructures of rod-like molecules are commonly limited to nematic or layered smectic structures dominated by the parallel arrangement of the rod-like components. Distinct self-assembly behavior of four categories of dendritic rods constructed by placing a tri(hydroxy) group at the apex of dendritic oligo-fluorenes is observed. Designed hydrogen bonding and dendritic architecture break the parallel arrangement of the rods, resulting in molecules with specific (fan-like or cone-like) shapes. While the fan-shaped molecules tend to form hexagonal packing cylindrical phases, the cone-shaped molecules could form spherical motifs to pack into various ordered structures, including the Frank-Kasper A15 phase and dodecagonal quasicrystal. This study provides a model system to engineer diverse supramolecular structures by rod-like molecules and sheds new light into the mechanisms of the formation of unconventional spherical packing structures in soft matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA