Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microvasc Res ; 142: 104341, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157839

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a highly angiogenic cancer. Manic fringe (MFng) is elevated in ccRCC compared to the normal kidney. However, its role in ccRCC tumour angiogenesis remains elusive. This study seeks to determine the expression pattern of MFng in ccRCC blood vessels and its role in angiogenesis. The association between MFng and the blood vessels was established through online compendia, immunohistochemistry and qPCR analyses. The anti-angiogenic potential of lentiviral-mediated MFng knockdown in endothelial cells (EC shMFng) was assessed for viability, proliferation, apoptosis, migration, adhesion, cell cycle, vessel sprouting, and molecular expression of adhesion and apoptosis markers. Finally, EC shMFng were co-cultured with 786-0 renal cancer cells to determine their impact on cancer cell migration. The online dataset analyses and immunostaining on ccRCC tissues revealed high expression of MFng in ECs. MFng and CD31/PECAM-1 genes were up-regulated in ccRCC tissue samples compared to normal kidney tissues. EC shMFng demonstrated decreased cell viability due to G1 cell cycle arrest and reduced Ki-67 protein expression. In addition, shMFng down-regulated endothelial adhesion molecules and hindered EC migration, network formation and sprouting, compared to their respective empty vector (EV) controls. Co-culture assay of EC shMFng with 786-0 renal cancer cells inhibited cancer cell migration. These findings underscore the potential role of MFng in ECs in influencing renal cancer cell migration, thus opening an avenue for anti-angiogenic strategy targeting MFng to treat ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología
2.
Exp Mol Pathol ; 122: 104667, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371013

RESUMEN

Renal cell carcinoma (RCC) is the most common type of kidney cancer and has the highest mortality rate among genitourinary cancers. Despite the advances in molecular targeted therapies to treat RCC, the inevitable emergence of resistance has delineated the need to uncover biomarkers to prospectively identify patient response to treatment and more accurately predict patient prognosis. Fringe is a fucose specific ß1, 3N-acetylglucosaminyltransferase that modifies the Notch receptors. Given the link between its function and aberrant Notch activation in RCC, Fringe may be implicated in this disease. The Fringe homologs comprise of Lunatic fringe (LFng), Manic fringe (MFng) and Radical fringe (RFng). MFng has been reported to play a role in cancer. MFng is also essential in the development of B cells. However, the expression profile and clinical significance of MFng, and its association with B cells in RCC are unknown. CD20 is a clinically employed biomarker for B cells. This pilot study aimed to determine if MFng protein expression can be utilized as a prospective biomarker for therapeutics and prognosis in RCC, as well as to determine its association with CD20+ B cells. Analysis of publicly available MFng gene expression datasets on The Cancer Genome Atlas Netlwork (TCGA) identified MFng gene expression to be up-regulated in Kidney Clear Cell Renal Carcinoma (KIRC) patients. However there was no significant association between the patient survival probability and the level of MFng expression in this cohort. Immunohistochemistry performed on a tissue microarray containing cores from 64 patients revealed an elevated MFng protein expression in the epithelial and stromal tissues of RCC compared to the normal kidney, suggesting a possible role in tumorigenesis. Our study describes for the first time to our knowledge, the protein expression of MFng in the nuclear compartment of normal kidney and RCC, implicating a prospective involvement in gene transcription. At the cellular level, cytoplasmic MFng was also abundant in the normal kidney and RCC. However, MFng protein expression in the malignant epithelial and stromal tissue of RCC had no positive correlation with the patients' overall survival, progression-free survival and time to metastasis, as well as the gender, age, tumor stage and RCC subtype, indicating that MFng may not be an appropriate prognostic marker. The association between CD20+ B cells and epithelial MFng was found to approach borderline insignificance. Nonetheless, these preliminary findings may provide valuable information on the suitability of MFng as a potential therapeutic molecular marker for RCC, thus warrants further investigation using a larger cohort.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Núcleo Celular/genética , Glucosiltransferasas/genética , Anciano , Antígenos CD20/genética , Carcinoma de Células Renales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Receptores Notch/genética , Transducción de Señal/genética , Células del Estroma/metabolismo
3.
Life Sci ; 232: 116652, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302197

RESUMEN

The development of new blood vessels from pre-existing vasculature is called angiogenesis. The growth of tumors depends on a network of supplying vessels that provide them with oxygen and nutrients. Pro-angiogenic factors that are secreted by tumors will trigger the sprouting of nearby existing blood vessels towards themselves and therefore researchers have developed targeted therapy towards these pro-angiogenic proteins to inhibit angiogenesis. However, certain pro-angiogenic proteins tend to bypass the inhibition. Thus, instead of targeting these expressed proteins, research towards angiogenesis inhibition had been focused on a deeper scale, epigenetic modifications. Epigenetic regulatory mechanisms are a heritable change in a sequence of stable but reversible gene function modification yet do not affect the DNA primary sequence directly. Methylation of DNA, modification of histone and silencing of micro-RNA (miRNA)-associated gene are currently considered to initiate and sustain epigenetic changes. Recent findings on the subject matter have provided an insight into the mechanism of epigenetic modifications, thus this review aims to present an update on the latest studies.


Asunto(s)
Linaje de la Célula , Epigenómica , Neoplasias/genética , Neoplasias/patología , Metilación de ADN , Humanos
4.
Biomed Pharmacother ; 103: 1246-1252, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29864905

RESUMEN

Glycosylation is an enzymatic process in which a carbohydrate is attached to a functional group from another molecule. Glycosylation is a crucial post translational process in protein modification. The tumor microenvironment produces altered glycans that contribute to cancer progression and aggressiveness. Abnormal glycosylation is widely observed in tumor angiogenesis. Despite many attempts to decipher the role of glycosylation in different aspects of cancer, little is known regarding the roles of glycans in angiogenesis. The blood vessels in tumors are often used to transport oxygen and nutrients for tumor progression and metastasis. The crosstalk within the tumor microenvironment can induce angiogenesis by manipulating these glycans to hijack the normal angiogenesis process, thus promoting tumor growth. Abnormal glycosylation has been shown to promote tumor angiogenesis by degrading the extracellular matrix to activate the angiogenic signaling pathways. This review highlights the latest update on how glycosylation can contribute to tumor angiogenesis that may affect treatment outcomes.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Animales , Glicosilación , Humanos , Modelos Biológicos , Neovascularización Patológica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA