RESUMEN
Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of µ-opioid receptor (µOR). Here, we report structures of the human µOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of µOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of µOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of µOR, which may facilitate rational design of next-generation analgesics.
Asunto(s)
Fentanilo , Morfina , Humanos , Analgésicos Opioides/farmacología , Arrestina/metabolismo , Fentanilo/farmacología , Proteínas de Unión al GTP/metabolismo , Morfina/farmacología , Receptores Opioides muRESUMEN
The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.
Asunto(s)
Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Transducción de Señal , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Secuencia de Aminoácidos , Secuencia Conservada , Microscopía por Crioelectrón , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Dopamina D1/ultraestructura , Receptores de Dopamina D2/ultraestructura , Homología Estructural de ProteínaRESUMEN
Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Adamantano/análogos & derivados , Adamantano/metabolismo , Antituberculosos/química , Transporte Biológico , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Etilenodiaminas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura , Compuestos de Fenilurea/metabolismo , Rimonabant/metabolismo , Tuberculosis/microbiologíaRESUMEN
Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.
Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G , Receptores Acoplados a Proteínas G , Transducción de Señal , Arrestinas/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/biosíntesis , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ligandos , Unión Proteica , Receptores de Neurotensina/metabolismoRESUMEN
The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.
Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complejos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
Thyroid-stimulating hormone (TSH), through activation of its G-protein-coupled thyrotropin receptor (TSHR), controls the synthesis of thyroid hormone-an essential metabolic hormone1-3. Aberrant signalling of TSHR by autoantibodies causes Graves' disease (hyperthyroidism) and hypothyroidism, both of which affect millions of patients worldwide4. Here we report the active structures of TSHR with TSH and the activating autoantibody M225, both bound to the allosteric agonist ML-1096, as well as an inactivated TSHR structure with the inhibitory antibody K1-707. Both TSH and M22 push the extracellular domain (ECD) of TSHR into an upright active conformation. By contrast, K1-70 blocks TSH binding and cannot push the ECD into the upright conformation. Comparisons of the active and inactivated structures of TSHR with those of the luteinizing hormone/choriogonadotropin receptor (LHCGR) reveal a universal activation mechanism of glycoprotein hormone receptors, in which a conserved ten-residue fragment (P10) from the hinge C-terminal loop mediates ECD interactions with the TSHR transmembrane domain8. One notable feature is that there are more than 15 cholesterols surrounding TSHR, supporting its preferential location in lipid rafts9. These structures also highlight a similar ECD-push mechanism for TSH and autoantibody M22 to activate TSHR, therefore providing the molecular basis for Graves' disease.
Asunto(s)
Inmunoglobulinas Estimulantes de la Tiroides , Receptores de Tirotropina , Tirotropina , Enfermedad de Graves/inmunología , Enfermedad de Graves/metabolismo , Humanos , Inmunoglobulinas Estimulantes de la Tiroides/inmunología , Microdominios de Membrana , Receptores de HL , Receptores de Tirotropina/agonistas , Receptores de Tirotropina/química , Receptores de Tirotropina/inmunología , Receptores de Tirotropina/metabolismo , Tirotropina/metabolismoRESUMEN
Luteinizing hormone and chorionic gonadotropin are glycoprotein hormones that are related to follicle-stimulating hormone and thyroid-stimulating hormone1,2. Luteinizing hormone and chorionic gonadotropin are essential to human reproduction and are important therapeutic drugs3-6. They activate the same G-protein-coupled receptor, luteinizing hormone-choriogonadotropin receptor (LHCGR), by binding to the large extracellular domain3. Here we report four cryo-electron microscopy structures of LHCGR: two structures of the wild-type receptor in the inactive and active states; and two structures of the constitutively active mutated receptor. The active structures are bound to chorionic gonadotropin and the stimulatory G protein (Gs), and one of the structures also contains Org43553, an allosteric agonist7. The structures reveal a distinct 'push-and-pull' mechanism of receptor activation, in which the extracellular domain is pushed by the bound hormone and pulled by the extended hinge loop next to the transmembrane domain. A highly conserved 10-residue fragment (P10) from the hinge C-terminal loop at the interface between the extracellular domain and the transmembrane domain functions as a tethered agonist to induce conformational changes in the transmembrane domain and G-protein coupling. Org43553 binds to a pocket of the transmembrane domain and interacts directly with P10, which further stabilizes the active conformation. Together, these structures provide a common model for understanding the signalling of glycoprotein hormone receptors and a basis for drug discovery for endocrine diseases.
Asunto(s)
Receptores de HL/química , Gonadotropina Coriónica/química , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estructura Secundaria de ProteínaRESUMEN
Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.
Asunto(s)
Microscopía por Crioelectrón , Ligandos , Lípidos , Receptores de Serotonina 5-HT1/metabolismo , Receptores de Serotonina 5-HT1/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Aripiprazol/metabolismo , Aripiprazol/farmacología , Sitios de Unión , Colesterol/farmacología , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/ultraestructura , Humanos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Receptor de Serotonina 5-HT1A/química , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/ultraestructura , Receptores de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agua/químicaRESUMEN
Somatostatin receptors (SSTRs) exert critical biological functions such as negatively regulating hormone release and cell proliferation, making them popular targets for developing therapeutics to treat endocrine disorders, especially neuroendocrine tumors. Although several panagonists mimicking the endogenous ligand somatostatin are available, the development of more effective and safer somatostatinergic therapies is limited due to a lack of molecular understanding of the ligand recognition and regulation of divergent SSTR subtypes. Here, we report four cryoelectron microscopy structures of Gi-coupled SSTR1 and SSTR3 activated by distinct agonists, including the FDA-approved panagonist pasireotide as well as their selective small molecule agonists L-797591 and L-796778. Our structures reveal a conserved recognition pattern of pasireotide in SSTRs attributed to the binding with a conserved extended binding pocket, distinct from SST14, octreotide, and lanreotide. Together with mutagenesis analyses, our structures further reveal the dynamic feature of ligand binding pockets in SSTR1 and SSTR3 to accommodate divergent agonists, the key determinants of ligand selectivity lying across the orthosteric pocket of different SSTR subtypes, as well as the molecular mechanism underlying diversity and conservation of receptor activation. Our work provides a framework for rational design of subtype-selective SSTR ligands and may facilitate drug development efforts targeting SSTRs with improved therapeutic efficacy and reduced side effects.
Asunto(s)
Microscopía por Crioelectrón , Receptores de Somatostatina , Somatostatina , Humanos , Sitios de Unión , Ligandos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Unión Proteica , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/ultraestructura , Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/químicaRESUMEN
The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.
Asunto(s)
Aprendizaje Profundo , Microscopía , Óptica y Fotónica , EncéfaloRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.
Asunto(s)
Aparato de Golgi , Herpesvirus Humano 8 , Lipoilación , Proteínas Virales , Virión , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Humanos , Virión/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología , Células HEK293RESUMEN
As one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells. Herein, a total of 451 lipids (263 upregulated lipids and 188 downregulated lipids), spanning sphingolipid, glycerolipid, and glycerophospholipids, were significantly altered compared with the mock-infected group. Interestingly, almost all the ceramides among these lipids were upregulated during PoRV infection. LC-MS analysis was used to validated the lipidomics data and demonstrated that PoRV replication increased the levels of long-chain ceramides (C16-ceramide, C18-ceramide, and C24-ceramide) in cells. Furthermore, we found that these long-chain ceramides markedly inhibited PoRV infection and that their antiviral actions were exerted in the replication stage of PoRV infection. Moreover, downregulation of endogenous ceramides with the ceramide metabolic inhibitors enhanced PoRV propagation. Increasing the levels of ceramides by the addition of C6-ceramide strikingly suppressed the replication of diverse RV strains. We further found that the treatment with an apoptotic inhibitor could reverse the antiviral activity of ceramide against PoRV replication, demonstrating that ceramide restricted RV infection by inducing apoptosis. Altogether, this study revealed that ceramides played an antiviral role against RV infection, providing potential approaches for the development of antiviral therapies.IMPORTANCERotaviruses (RVs) are among the most important zoonosis viruses, which mainly infected enterocytes of the intestinal epithelium causing diarrhea in children and the young of many mammalian and avian species. Lipids play an essential role in viral infection. A comprehensive understanding of the interaction between RV and lipid metabolism in the enterocytes will be helpful to control RV infection. Here, we mapped changes in enterocyte lipids following porcine RV (PoRV) infection using an untargeted lipidomics approach. We found that PoRV infection altered the metabolism of various lipid species, especially ceramides (derivatives of the sphingosine). We further demonstrated that PoRV infection increased the accumulation of ceramides and that ceramides exerted antiviral effects on RV replication by inducing apoptosis. Our findings fill a gap in understanding the alterations of lipid metabolism in RV-infected enterocytes and highlight the antiviral effects of ceramides on RV infection, suggesting potential approaches to control RV infection.
Asunto(s)
Ceramidas , Infecciones por Rotavirus , Rotavirus , Animales , Ceramidas/metabolismo , Metabolismo de los Lípidos , Lipidómica , Rotavirus/fisiología , Porcinos , Enterocitos/metabolismo , Enterocitos/virología , Infecciones por Rotavirus/metabolismo , Línea CelularRESUMEN
The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.
Asunto(s)
Anafilatoxinas , Receptores de Complemento , Transducción de SeñalRESUMEN
BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.
Asunto(s)
Metabolismo de los Hidratos de Carbono , Escoliosis , Humanos , Escoliosis/genética , Escoliosis/patología , Adolescente , Femenino , Masculino , Metabolismo de los Hidratos de Carbono/genética , Predisposición Genética a la Enfermedad , Niño , Secuenciación del Exoma , Transportadores de Ácidos Monocarboxílicos/genética , Estudios de Casos y Controles , Estudios de Asociación Genética , MutaciónRESUMEN
SMAD4 constrains progression of Pten-null prostate cancer and serves as a common downstream node of transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) pathways. Here, we dissected the roles of TGFß receptor II (TGFBR2) and BMP receptor II (BMPR2) using a Pten-null prostate cancer model. These studies demonstrated that the molecular actions of TGFBR2 result in both SMAD4-dependent constraint of proliferation and SMAD4-independent activation of apoptosis. In contrast, BMPR2 deletion extended survival relative to Pten deletion alone, establishing its promoting role in BMP6-driven prostate cancer progression. These analyses reveal the complexity of TGFß-BMP signaling and illuminate potential therapeutic targets for prostate cancer.
Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Neoplasias de la Próstata/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genotipo , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Proteína Smad4/genética , Proteína Smad4/metabolismoRESUMEN
The crucial roles that glycans play in biological systems are determined by their structures. However, the analysis of glycan structures still has numerous bottlenecks due to their inherent complexities. The nanopore technology has emerged as a powerful sensor for DNA sequencing and peptide detection. This has a significant impact on the development of a related research area. Currently, nanopores are beginning to be applied for the detection of simple glycans, but the analysis of complex glycans by this technology is still challenging. Here, we designed an engineered α-hemolysin nanopore M113R/T115A to achieve the sensing of complex glycans at micromolar concentrations and under label-free conditions. By extracting characteristic features to depict a three-dimensional (3D) scatter plot, glycans with different numbers of functional groups, various chain lengths ranging from disaccharide to decasaccharide, and distinct glycosidic linkages could be distinguished. Molecular dynamics (MD) simulations show different behaviors of glycans with ß1,3- or ß1,4-glycosidic bonds in nanopores. More importantly, the designed nanopore system permitted the discrimination of each glycan isomer with different lengths in a mixture with a separation ratio of over 0.9. This work represents a proof-of-concept demonstration that complex glycans can be analyzed using nanopore sequencing technology.
Asunto(s)
Simulación de Dinámica Molecular , Nanoporos , Polisacáridos , Polisacáridos/química , Proteínas Hemolisinas/química , Ingeniería de ProteínasRESUMEN
BACKGROUND: Tyrosine kinase inhibitors (TKIs) are crucial in the targeted treatment of advanced colorectal cancer (CRC). Anlotinib, a multi-target TKI, has previously been demonstrated to offer therapeutic benefits in previous studies. Circular RNAs (circRNAs) have been implicated in CRC progression and their unique structural stability serves as promising biomarkers. The detailed molecular mechanisms and specific biomarkers related to circRNAs in the era of targeted therapies, however, remain obscure. METHODS: The whole transcriptome RNA sequencing and function experiments were conducted to identify candidate anlotinib-regulated circRNAs, whose mechanism was confirmed by molecular biology experiments. CircHAS2 was profiled in a library of patient-derived CRC organoids (n = 22) and patient-derived CRC tumors in mice. Furthermore, a prospective phase II clinical study of 14 advanced CRC patients with anlotinib-based therapy was commenced to verify drug sensitivity (ClinicalTrials.gov identifier: NCT05262335). RESULTS: Anlotinib inhibits tumor growth in vitro and in vivo by downregulating circHAS2. CircHAS2 modulates CCNE2 activation by acting as a sponge for miR-1244, and binding to USP10 to facilitate p53 nuclear export as well as degradation. In parallel, circHAS2 serves as a potent biomarker predictive of anlotinib sensitivity, both in patient-derived organoids and xenograft models. Moreover, the efficacy of anlotinib inclusion into the treatment regimen yields meaningful clinical responses in patients with high levels of circHAS2. Our findings offer a promising targeted strategy for approximately 52.9% of advanced CRC patients who have high circHAS2 levels. CONCLUSIONS: CircHAS2 promotes cell proliferation via the miR-1244/CCNE2 and USP10/p53/CCNE2 bidirectional axes. Patient-derived organoids and xenograft models are employed to validate the sensitivity to anlotinib. Furthermore, our preliminary Phase II clinical study, involving advanced CRC patients treated with anlotinib, confirmed circHAS2 as a potential sensitivity marker.
Asunto(s)
Neoplasias Colorrectales , Indoles , MicroARNs , Quinolinas , Humanos , Animales , Ratones , ARN Circular/genética , Proteína p53 Supresora de Tumor , Estudios Prospectivos , MicroARNs/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proliferación Celular/genética , Biomarcadores , Ubiquitina Tiolesterasa/metabolismo , Ciclinas/metabolismoRESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) exhibits multiresistance to a plethora of antibiotics, therefore, accurate detection methods must be employed for timely identification to facilitate effective infection control measures. Herein, we construct a high-efficiency ratiometric electrochemiluminescent (ECL) biosensor that integrates multiple exonuclease (Exo) III-assisted cyclic amplification units for rapid detection of trace amounts of MRSA. The target bacteria selectively bind to the aptamer, triggering the release of two single-stranded DNAs. One released DNA strand initiates the opening of a hairpin probe, inducing exonuclease cleavage to generate a single strand that can form a T-shaped structure with the double strand connecting the oxidation-reduction (O-R) emitter of N-(4-aminobutyl)-N-ethylisoluminol gold (ABEI-Au). Consequently, ABEI-Au is released upon Exo III cleavage. The other strand unwinds the hairpin DNA structure on the surface of the reduction-oxidation (R-O) emitter ZIF-8@CdS, facilitating the subsequent release of a specific single strand through Exo III cleavage. This process effectively anchors the cathode-emitting material to the electrode. The Fe(III) metal-organogel (Fe-MOG) is selected as a substrate, in which the catalytic reduction of hydrogen peroxide by Fe(III) active centers accelerates the generation of reactive oxygen species and enhances signals from both ABEI-Au and ZIF-8@CdS. In this way, the two emitters cooperate to achieve bacterial detection at the single-cell level, and a good linear range is obtained in the range of 100-107 CFU/mL. Moreover, the sensor exhibited excellent performance in detecting MRSA across various authentic samples and accurately quantifying MRSA levels in serum samples, demonstrating its immense potential in addressing clinical bacterial detection challenges.
Asunto(s)
Técnicas Biosensibles , Exodesoxirribonucleasas , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Mediciones Luminiscentes/métodos , Compuestos Férricos , ADN/química , Oro/química , Exonucleasas , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/químicaRESUMEN
BACKGROUND: The combination of anti-programmed death 1 (PD-1) inhibitors and tyrosine kinase inhibitors is an effective treatment strategy in endometrial cancer. We aimed to explore the efficacy and safety of camrelizumab plus apatinib as an alternative therapeutic option in patients with previously treated endometrial cancer. METHODS: This single-arm Simon's two-stage phase II trial was conducted at the Fudan University Shanghai Cancer Center. Patients with advanced or recurrent endometrial cancer who had failed at least one prior systemic therapy were screened for potential participation. Eligible patients were treated with intravenous camrelizumab (200 mg d1 q2w) and oral apatinib (250 mg qd) every 4 weeks. The primary end point was the objective response rate (ORR) per RECIST v1.1 in the intention-to-treat principle. RESULTS: Between January 20, 2020, and October 14, 2022, 36 patients (29 with microsatellite stability/mismatch repair proficient [MSS/pMMR] tumors; two with microsatellite instability-high/mismatch repair deficient [MSI-H/dMMR] tumors) were enrolled and treated. The confirmed ORR was 44.4% (95% CI: 27.9, 61.9) and the disease control rate was 91.7% (95% CI: 77.5, 98.2). The median duration of response was 9.3 (95% CI: 4.3, not reached) months, the median progression-free survival was 6.2 (95% CI: 5.3, 11.1) months, and the median overall survival was 21.0 (95% CI: 13.4, not reached) months during a median follow-up of 14.2 (interquartile range: 10.3, 27.6) months. Treatment-related adverse events of grade 3 or 4 occurred in 20 (55.6%) patients, with the most common being increased γ-glutamyl transferase (27.8%), alanine aminotransferase (16.7%) and aspartate aminotransferase (13.9%), and hypertension (11.1%). No treatment-related death occurred. CONCLUSIONS: Camrelizumab plus apatinib showed promising antitumor activity with manageable toxicity in patients with advanced or recurrent endometrial cancer who had failed at least one prior systemic therapy. The findings of this study support further investigation of camrelizumab plus apatinib as an alternative therapeutic option, especially for patients with MSS/pMMR tumors. TRIAL REGISTRATION: This trial was retrospectively registered with ChiCTR.org.cn, number ChiCTR2000031932.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias Endometriales , Piridinas , Humanos , Femenino , Persona de Mediana Edad , Piridinas/uso terapéutico , Piridinas/administración & dosificación , Neoplasias Endometriales/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anciano , Adulto , Recurrencia Local de Neoplasia/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificaciónRESUMEN
Recently, volatile solid additives have attracted tremendous interest in the field of organic solar cells (OSCs), which can effectively improve device efficiency without sacrificing the reproducibility and stability of the device. However, the structure of reported solid additives is onefold and its working mechanism needs to be further investigated. Herein, a novel non-halogenated and twisted solid additive 1,4-diphenoxybenzene (DPB) is employed to optimize the morphology of the active layer in OSCs. The properties of additive DPB, morphology of active layer, and carrier dynamics behaviors have been systematically investigated through theoretical calculations, in situ and ex situ spectroscopy, grazing-incidence wide-angle X-ray scattering (GIWAXS), and grazing-incidence small-angle X-ray scattering (GISAXS) measurement, as well as ultrafast spectroscopy technology. The results reveal that the twisted additive DPB selectively interacts with acceptor Y6, and thus forms optimized morphology of active layer with increased molecular crystallinity, tight molecular packing, and favorable phase separation. As a result, the optimized devices deliver a remarkable power conversion efficiency (PCE) of 19.04%, which is the highest value for the D18-Cl:N3 system to date. These results demonstrate that non-halogenated and twisted solid additive DPB has broad prospects in the preparation of highly efficient OSCs, providing theoretical and experimental guidance for the development of high-performance solid additives.