Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(35): 13067-13078, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37603309

RESUMEN

Aerosol black carbon (BC) is a short-lived climate pollutant. The poorly constrained provenance of tropical marine aerosol BC hinders the mechanistic understanding of extreme climate events and oceanic carbon cycling. Here, we collected PM2.5 samples during research cruise NORC2016-10 through South China Sea (SCS) and Northeast Indian Ocean (NEIO) and measured the dual-carbon isotope compositions (δ13C-Δ14C) of BC using hydrogen pyrolysis technique. Aerosol BC exhibits six different δ13C-Δ14C isotopic spaces (i.e., isotope provinces). Liquid fossil fuel combustion, from shipping emissions and adjacent land, is the predominant source of BC over isotope provinces "SCS close to Chinese Mainland" (53.5%), "Malacca Strait" (53.4%), and "Open NEIO" (40.7%). C3 biomass burning is the major contributor to BC over isotope provinces "NEIO close to Southeast Asia" (55.8%), "Open NEIO" (41.3%), and "Open SCS" (40.0%). Coal combustion and C4 biomass burning show higher contributions to BC over "Sunda Strait" and "Open SCS" than the others. Overall, NEIO near the Bay of Bengal, Malacca Strait, and north SCS are three hot spots of fossil fuel-derived BC; the first two areas are also hot spots of biomass-derived BC. The comparable δ13C-Δ14C between BC in aerosol and dissolved BC in surface seawater may suggest atmospheric BC deposition as a potential source of oceanic dissolved BC.


Asunto(s)
Combustibles Fósiles , Océano Índico , Aerosoles , Isótopos de Carbono , China
2.
Environ Sci Technol ; 56(20): 14262-14271, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36206450

RESUMEN

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols, and their sources remain poorly defined. N-alkanes represent a considerable portion of IVOCs in atmosphere, which can be well identified and quantified out of the complex IVOC pool. To investigate the potential source diversity of intermediate volatility n-alkanes (IVnAs, nC12-nC20), we apportioned the sources of IVnAs in the atmosphere of four North China cities, based on their compound-specific δ13C-δD isotope compositions and Bayesian model analysis. The concentration level of IVnAs reached 1195 ± 594 ng/m3. The δ13C values of IVnAs ranged -32.3 to -27.6‰ and δD values -161 to -90‰. The δD values showed a general increasing trend toward higher carbon number alkanes, albeit a zigzag odd-even prevalence. Bayesian MixSIAR model using δ13C and δD compositions revealed that the source patterns of individual IVnAs were inconsistent; the relative contributions of liquid fossil combustion were higher for lighter IVnAs (e.g., nC12-nC13), while those of coal combustion were higher for heavier IVnAs (e.g., nC17-nC20). This result agrees with principal component analysis of the dual isotope data. Overall, coal combustion, liquid fossil fuel combustion, and biomass burning contributed about 47.8 ± 0.1, 35.7 ± 4.0, and 16.3 ± 4.2% to the total IVnAs, respectively, highlighting the importance of coal combustion as an IVnA source in North China. Our study demonstrates that the dual-isotope approach is a powerful tool for source apportionment of atmospheric IVOCs.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Alcanos/análisis , Teorema de Bayes , Carbono , China , Carbón Mineral , Monitoreo del Ambiente , Combustibles Fósiles , Isótopos
3.
Environ Sci Technol ; 54(9): 5409-5418, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32259434

RESUMEN

Naphthalene (NAP), as a surrogate of intermediate-volatility organic compounds (IVOCs), has been proposed to be an important precursor of secondary organic aerosol (SOA). However, the relative contribution of its emission sources is still not explicit. This study firstly conducted the source apportionment of atmospheric NAP using a triple-isotope (δ13C, δ2H, and Δ14C) technique combined with a Bayesian model in the Beijing-Tianjin-Hebei (BTH) region of China. At the urban sites, stable carbon (-27.7 ± 0.7‰, δ13C) and radiocarbon (-944.0 ± 20.4‰, Δ14C) isotope compositions of NAP did not exhibit significant seasonal variation, but the deuterium system showed a relatively more 2H depleted signature in winter (-86.7 ± 8.9‰, δ2H) in comparison to that in summer (-56.4 ± 3.9‰, δ2H). Radiocarbon signatures indicated that 95.1 ± 1.8% of NAP was emitted from fossil sources in these cities. The Bayesian model results indicated that the emission source compositions in the BTH urban sites had a similar pattern. The contribution of liquid fossil combustion was highest (46.7 ± 2.6%), followed by coal high-temperature combustion (26.8 ± 7.1%), coal low-temperature combustion (18.9 ± 6.4%), and biomass burning (7.6 ± 3.1%). At the suburban site, the contribution of coal low-temperature combustion could reach 70.1 ± 6.4%. The triple-isotope based approach provides a top-down constraint on the sources of atmospheric NAP and could be further applied to other IVOCs in the ambient atmosphere.


Asunto(s)
Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles , Teorema de Bayes , Beijing , China , Ciudades , Monitoreo del Ambiente , Isótopos , Naftalenos , Volatilización
4.
Environ Sci Technol ; 53(7): 3464-3470, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30844251

RESUMEN

Although polychlorinated biphenyls (PCBs) have been banned for several decades, they are still detected with elevated levels due to their unintentional production from combustion and industrial thermal processes (UP-PCBs). To investigate the composition and current levels of UP-PCBs and understand which sources are controlling PCB burdens in ambient atmosphere, air samples were collected from August 2012 to August 2015 at a background site in east China. An unexpected high abundance of PCB47+48+75 was observed to be the predominant congener with an average concentration of 786 ± 637 pg/m3. It accounted for 48 ± 16% of ΣPCBs, followed by PCB51 (10 ± 4%), PCB11 (8 ± 6%), and PCB68 (7 ± 3%). Seasonal variations with high levels in summer and lowest levels in winter were observed for PCB47+48+75, 51, and 68. These tetrachlorobiphenyl congeners were strongly correlated with temperature ( r2 > 0.7), suggesting the control of temperature-dependent volatilization processes from contaminated surfaces. The decreased occurrence of PCB47+48+75, 51, and 68 in commercial products and their negative correlations (| r| < 0.35) with polycyclic aromatic hydrocarbon (PAHs) and weak correlation with other PCB congeners suggested unique unintentional sources that differ from combustion and industrial thermal processes or pigment, such as the use of polymer sealant, for PCB47+48+75, 51, and 68 in the ambient air.


Asunto(s)
Contaminantes Atmosféricos , Bifenilos Policlorados , Atmósfera , China , Monitoreo del Ambiente
5.
Ecotoxicol Environ Saf ; 161: 64-69, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859409

RESUMEN

To better understand the potential genic communication and dissemination of antibiotic resistance genes (ARGs) in different environmental matrices, the differences of ARG profiles between river surface water and sediments were explored. Metagenomic analysis was applied to investigate the comprehensive ARG profiles in water and sediment samples collected from the highly human-impacted catchment of the Beijiang River and its river source. A total of 135 ARG subtypes belonging to 18 ARG types were identified. Generally, ARGs in surface water were more diverse and abundant than those in sediments. ARG profiles in the surface water and sediment samples were distinct from each other, but some ARGs were shared by the surface water and sediments. Results revealed that multidrug and bacitracin resistance genes were the predominant ARGs types in both surface water (0.30, 0.17 copies/cell) and sediments (0.19, 0.15 copies/cell). 73 ARG subtypes were shared by the water and sediment samples and had taken over 90% of the total detected ARG abundance. Most of the shared ARGs are resistant to the clinically relevant antibiotics. Furthermore, significant correlations between the ARGs and 21 shared genera or mobile genetic elements (MGEs) (plasmids and integrons) were found in surface water and sediments, suggesting the important role of genera or MGEs in shaping ARGs profiles, propagation and distribution. These findings provide deeper insight into mitigating the propagation of ARGs and the associated risks to public health.


Asunto(s)
Antibacterianos/farmacología , Bacterias/genética , ADN Bacteriano/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Sedimentos Geológicos/microbiología , Ríos/microbiología , Humanos , Integrones , Metagenómica/métodos , Plásmidos , Microbiología del Suelo , Microbiología del Agua
6.
J Environ Sci (China) ; 69: 125-132, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29941248

RESUMEN

Previous studies on environmental antibiotics resistance genes (ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms, etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence, the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River. Among them, 11 ARGs were frequently detected in this region and 5 ARGs (sulI, sulII, tetB, tetC, and tetW) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream (8.70×106copies/ng DNA) and downstream areas (3.17×106copies/ng DNA) than those in the midstream areas (1.23×106copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sulI and sulII were likely originated from aquaculture farms and animal farms, tetW gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tetC gene was commonly found in the area with multiple pollution sources. However, the abundance of tetB was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.


Asunto(s)
Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Bacterianos , Ríos/microbiología , Acuicultura , Aguas Residuales/química
7.
Environ Sci Technol ; 51(8): 4424-4433, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28355053

RESUMEN

The goal of this study is to experimentally assess the role of vertical sinking and degradation processes of persistent organic pollutants (POPs) in a subtropical water column. This was done by measuring the concentrations of selected typical organochlorine pesticides, including hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), trans-chlordane (TC), and cis-chlordane (CC), in atmosphere (gas phase), water (dissolved and particulate phases), and sedimentation samples simultaneously from October 2011 to April 2013 in a subtropical lake. The fugacity ratios suggested net deposition for α-HCH, γ-HCH, p,p'-DDT, p,p'-DDD, p,p'-DDE, o,p'-DDT, TC, and CC, indicating that the subtropical lake was acting as a "sink" for these chemicals. The enantiomer fractions of α-HCH, o,p'-DDT, TC, and CC in the dissolved phase samples were much more deviated from the racemic values than were those in the air samples, suggesting that these chemicals have suffered microbial degradation in the subtropical lake. In fact, 99% to 100% of atmospheric input of α-HCH and γ-HCH to the subtropical lake was estimated to be depleted via microbial degradation, while the role of hydrolysis and vertical sinking was very small. For more hydrophobic p,p'-DDT, o,p'-DDT, TC, and CC, the role of vertical sinking was 2 to 3 orders of magnitude larger than that for α-HCH and γ-HCH. Microbial degradation was also very important for removing p,p'-DDT, o,p'-DDT, TC, and CC from the water column.


Asunto(s)
Monitoreo del Ambiente , Agua , Clordano , Hidrocarburos Clorados , Plaguicidas
8.
Environ Sci Technol ; 50(16): 8623-30, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27427439

RESUMEN

The recycling of e-waste has attracted significant attention due to emissions of polychlorinated biphenyls (PCBs) and other contaminants into the environment. We measured PCB concentrations in surface soils, air equilibrated with the soil, and air at 1.5-m height using a fugacity sampler in an abandoned electronic waste (e-waste) recycling site in South China. The total concentrations of PCBs in the soils were 39.8-940 ng/g, whereas the concentrations in air equilibrated with the soil and air at 1.5 m height were 487-8280 pg/m(3) and 287-7380 pg/m(3), respectively. The PCB concentrations displayed seasonal variation; they were higher in winter in the soils and higher in summer in the air, indicating that the emission of PCBs from the soil was enhanced during hot seasons for the relatively high temperature or additional sources, especially for low-chlorinated PCBs. We compared two methods (traditional fugacity model and fugacity sampler) for assessing the soil-air partition coefficients (Ksa) and the fugacity fractions of PCBs. The results suggested that the fugacity sampler provided more instructive and practical estimation on Ksa values and trends in air-soil exchange, especially for low-chlorinated PCBs. The abandoned e-waste burning site still acted as a significant source of PCBs many years after the prohibition on open burning.


Asunto(s)
Contaminantes Atmosféricos/análisis , Residuos Electrónicos , Bifenilos Policlorados/análisis , Reciclaje , Contaminantes del Suelo/análisis , China , Monitoreo del Ambiente
9.
Sci Rep ; 14(1): 15202, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956148

RESUMEN

This study aimed to develop and internally validate a nomogram model for assessing the risk of intraoperative hypothermia in patients undergoing video-assisted thoracoscopic (VATS) lobectomy. This study is a retrospective study. A total of 530 patients who undergoing VATS lobectomy from January 2022 to December 2023 in a tertiary hospital in Wuhan were selected. Patients were divided into hypothermia group (n = 346) and non-hypothermia group (n = 184) according to whether hypothermia occurred during the operation. Lasso regression was used to screen the independent variables. Logistic regression was used to analyze the risk factors of hypothermia during operation, and a nomogram model was established. Bootstrap method was used to internally verify the nomogram model. Receiver operating characteristic (ROC) curve was used to evaluate the discrimination of the model. Calibration curve and Hosmer Lemeshow test were used to evaluate the accuracy of the model. Decision curve analysis (DCA) was used to evaluate the clinical utility of the model. Intraoperative hypothermia occurred in 346 of 530 patients undergoing VATS lobectomy (65.28%). Logistic regression analysis showed that age, serum total bilirubin, inhaled desflurane, anesthesia duration, intraoperative infusion volume, intraoperative blood loss and body mass index were risk factors for intraoperative hypothermia in patients undergoing VATS lobectomy (P < 0.05). The area under ROC curve was 0.757, 95% CI (0.714-0.799). The optimal cutoff value was 0.635, the sensitivity was 0.717, and the specificity was 0.658. These results suggested that the model was well discriminated. Calibration curve has shown that the actual values are generally in agreement with the predicted values. Hosmer-Lemeshow test showed that χ2 = 5.588, P = 0.693, indicating that the model has a good accuracy. The DCA results confirmed that the model had high clinical utility. The nomogram model constructed in this study showed good discrimination, accuracy and clinical utility in predicting patients with intraoperative hypothermia, which can provide reference for medical staff to screen high-risk of intraoperative hypothermia in patients undergoing VATS lobectomy.


Asunto(s)
Hipotermia , Nomogramas , Cirugía Torácica Asistida por Video , Humanos , Masculino , Femenino , Cirugía Torácica Asistida por Video/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Hipotermia/etiología , Anciano , Factores de Riesgo , Curva ROC , Neumonectomía , Complicaciones Intraoperatorias/etiología , Neoplasias Pulmonares/cirugía , Adulto , Modelos Logísticos
10.
Environ Sci Technol ; 47(23): 13395-403, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24251554

RESUMEN

Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.


Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Atmósfera , Monitoreo del Ambiente , Océano Índico , Agua de Mar/análisis , Sri Lanka , Volatilización
11.
Environ Sci Technol ; 47(6): 2679-87, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23448390

RESUMEN

Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 µg/sampler (17.69 ng/m(3)) and 4.1 µg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 µg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.


Asunto(s)
Aire/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Hidrocarburos Clorados/análisis , Parafina/análisis , Ríos/química , Suelo/química , China
12.
Sci Total Environ ; 888: 164182, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196948

RESUMEN

Organic carbon aerosol (OC) is a pivotal component of PM2.5 in the atmospheric environment, yet its emission sources and atmospheric behaviors remain poorly constrained in many regions. In this study, a comprehensive method based on the combination of dual­carbon isotopes (13C and 14C) and macro tracers was employed in the PRDAIO campaign performed in the megacity of Guangzhou, China. The 14C analysis showed that 60 ± 9 % of OC during the sampling campaign was associated with non-fossil sources such as biomass burning activities and biogenic emissions. It should be noted that this non-fossil contribution in OC would significantly decrease when the air masses came from the eastern cities. Overall, we found that non-fossil secondary OC (SOCNF) was the largest contributor (39 ± 10 %) to OC, followed by fossil secondary OC (SOCFF: 26 ± 5 %), fossil primary OC (POCFF: 14 ± 6 %), biomass burning OC (OCbb: 13 ± 6 %) and cooking OC (OCck: 8 ± 5 %). Also, we established the dynamic variation of 13C as a function of aged OC and the volatile organic compounds (VOCs) oxidized OC to explore the impact of aging processes on OC. Our pilot results showed that atmospheric aging was highly sensitive to the emission sources of seed OC particles, with a higher aging degree (86 ± 4 %) when more non-fossil OC particles were transferred from the northern PRD.

13.
Nat Commun ; 13(1): 5115, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045131

RESUMEN

Incomplete understanding of the sources of secondary organic aerosol (SOA) leads to large uncertainty in both air quality management and in climate change assessment. Chemical reactions occurring in the atmospheric aqueous phase represent an important source of SOA mass, yet, the effects of anthropogenic emissions on the aqueous SOA (aqSOA) are not well constrained. Here we use compound-specific dual-carbon isotopic fingerprints (δ13C and Δ14C) of dominant aqSOA molecules, such as oxalic acid, to track the precursor sources and formation mechanisms of aqSOA. Substantial stable carbon isotope fractionation of aqSOA molecules provides robust evidence for extensive aqueous-phase processing. Contrary to the paradigm that these aqSOA compounds are largely biogenic, radiocarbon-based source apportionments show that fossil precursors produced over one-half of the aqSOA molecules. Large fractions of fossil-derived aqSOA contribute substantially to the total water-soluble organic aerosol load and hence impact projections of both air quality and anthropogenic radiative forcing. Our findings reveal the importance of fossil emissions for aqSOA with effects on climate and air quality.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Isótopos de Carbono/análisis , China , Fósiles , Agua
14.
Environ Pollut ; 294: 118638, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890747

RESUMEN

Black carbon (BC) aerosol negatively affects air quality and contributes to climate warming globally. However, little is known about the relative contributions of different source control measures to BC reduction owing to the lack of powerful source-diagnostic tools. We combine the fingerprints of dual-carbon isotope using an optimized Bayesian Markov chain Monte Carlo (MCMC) scheme and for the first time to study the key sources of BC in megacity Guangzhou of the Pearl River Delta (PRD) region, China in 2018 autumn season. The MCMC model-derived source apportionment of BC shows that the dominant contributor is petroleum combustion (39%), followed by coal combustion (34%) and biomass burning (27%). It should be noted that the BC source pattern is highly sensitive to the variations of air masses transported with an enhanced contribution of fossil source from the eastern area, suggesting the important impact of regional atmospheric transportation on the BC source profile in the PRD region. Also, we further found that fossil fuel combustion BC contributed 84% to the total BC reduction during 2013-2018. The response of PM2.5 concentration to the 14C-derived BC source apportionment is successfully fitted (r = 0.90) and the results predicted that it would take ∼6 years to reach the WHO PM2.5 guideline value (10 µg m-3) for the PRD region if the emission control measures keep same as they are at present. Taken together, our findings suggest that dual-carbon isotope is a powerful tool in constraining the source apportionment of BC for the evaluations of air pollution control and carbon emission measures.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Teorema de Bayes , Carbono/análisis , Isótopos de Carbono , China , Monitoreo del Ambiente , Estaciones del Año
15.
Environ Pollut ; 259: 113853, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31923813

RESUMEN

To highlight the levels and distributions and to assess the risk of human exposure of chlorinated paraffins (CPs) in PM2.5 in China, the concentrations and homologue patterns of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in PM2.5 from 10 cities in China were studied in 2013 and 2014. The mean concentrations of ΣSCCPs and ΣMCCPs were 19.9 ± 41.1 ng m-3 and 15.6 ± 18.6 ng m-3, respectively. Unexpectedly, the highest pollution levels occurred in two central cities (Xinxiang and Taiyuan) rather than in well-known eastern megacities such as Beijing, Nanjing, Shanghai, and Guangzhou. By comparing with earlier research, it has indicated the trend of CPs industry shifting from large eastern cities to small and medium-sized cities in central China to some extent. In addition, the composition pattern of SCCPs demonstrated an obviously differences from previous studies, with C11 and Cl7 predominating and accounting for 45.1% and 24.9%, respectively. Meanwhile, the ratio of MCCPs/SCCPs in most cities was less than 1.00 except for Guangzhou (1.92), Shanghai (1.29), and Taiyuan (1.11). Combined with the results of correlation analysis and principal component analysis, the observed pollution characteristics of CPs in PM2.5 had similar sources, which were more influenced by the ratio of MCCPs/SCCPs than by organic carbon, elemental carbon, temperature, population, and gross domestic product. Overall, the composition of CPs reflected the characteristics of local industrial production and consumption, and also implied efforts of Chinese enterprises to reduce the content of short carbon groups of CPs production. The CPs mainly deposited in head airways during the process of entering the human respiratory system. However, at the present levels, there was no significant carcinogenic effect for human health.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Clorados , Industrias , Parafina/análisis , Material Particulado , Beijing , China , Ciudades , Industrias/tendencias , Material Particulado/química , Análisis Espacio-Temporal
16.
Environ Pollut ; 262: 114267, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32179224

RESUMEN

Multiple types of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and hexachlorobenzene (HCB), can be unintentionally released from combustion or thermal industrial processes, which are speculated to be the main sources of these contaminants, as they were banned on production and use since several decades ago. In this study, concentrations and sources of 40 PCBs, 39 PCNs, and HCB were analyzed in air samples collected during the period 2012-2015 at a background site in east China. ΣPCBs, ΣPCNs, and HCB were in the range of 9-341 pg/m3, 6-143 pg/m3, and 14-522 pg/m3, respectively. Seasonal characteristics with high levels in winter and low levels in summer were observed for PCNs and HCB. PCBs also exhibited slightly higher levels in winter. Source apportionment was conducted, using polycyclic aromatic hydrocarbons (PAHs) as combustion sources indicator, combined with principal component analysis (PCA) and positive matrix factorization (PMF) model. The results indicated that the legacy of past produced and used commercial PCBs was the dominant contributor (∼56%) to the selected PCBs in the atmosphere in east China. PCNs were mainly emitted from combustion sources (∼64%), whereas HCB almost entirely originated from combustion process (>90%).


Asunto(s)
Contaminantes Atmosféricos/análisis , Bifenilos Policlorados/análisis , Atmósfera , China , Monitoreo del Ambiente , Hexaclorobenceno , Naftalenos/análisis
17.
Sci Total Environ ; 744: 140359, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32688001

RESUMEN

Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (14C) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015-December 2016). The annual average 14C signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The 14C-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.

18.
Environ Int ; 144: 106079, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866733

RESUMEN

Atmospheric brown carbon (BrC) is an important constituent of light-absorbing organic aerosols with many unclear issues. Here, the light-absorption properties of BrC with different polarity characteristics at a regional site of Pearl River Delta Region during 2016-2017, influenced by sources and molecular compositions, were revealed using radiocarbon analysis and Fourier transform ion cyclotron resonance mass spectrometry. Humic-like substance (HULIS), middle polar (MP), and low polar (LP) carbon fractions constitute 46 ± 17%, 30 ± 7%, and 7 ± 3% of total absorption coefficient from bulk extracts, respectively. Our results show that the absorption proportions of HULIS and MP to the total BrC absorption are higher than their mass proportions to organic carbon mass, indicating that HULIS and MP are the main light-absorbing components in water-soluble and water-insoluble organic carbon fractions, respectively. With decreases in non-fossil HULIS, MP, and LP carbon fractions (66 ± 2%, 52 ± 2%, and 36 ± 3%, respectively), the abundances of unsaturated compounds and mass absorption efficiency at 365 nm of three fractions decreased synchronously. Increases in both non-fossil carbon and levoglucosan in winter imply that the enhanced light-absorption could be attributed to elevated levels of biomass burning organic aerosols (BBOA), which increases the number of light-absorbing nitrogen-containing compounds. Moreover, the major type of potential BrC in HULIS and MP carbon fractions are oxidized BBOA, but the potential BrC chromophores in LP are mainly associated with primary BBOA. This study reveals that biomass burning has adverse effects on radiative forcing and air quality, and probably indicates the significant influences of atmospheric oxidation reactions on the forms of chromophores.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , China
19.
Environ Sci Pollut Res Int ; 26(31): 31934-31944, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31489547

RESUMEN

Jinsha (JSH) is one of the regional background sites in Central China. In this study, eight polybrominated diphenyl ethers (PBDEs) were measured in atmospheric deposition samples (dry particle, wet particle, and wet dissolved), air (gaseous and particle) samples, and soil samples that were collected from March 2012 to March 2013. Of all eight PBDEs, BDE-209 was the most abundant congener in both deposition samples and air/soil samples. Average dry particle, wet particle, and wet dissolved deposition fluxes of Σ8PBDEs were 270 ± 310 pg m-2 day-1, 130 ± 210 pg m-2 day-1, and 250 ± 330 pg m-2 day-1, respectively, while those of BDE-209 were 210 ± 290 pg m-2 day-1, 80 ± 120 pg m-2 day-1, and 160 ± 290 pg m-2 day-1, respectively. Dry deposition velocities of individual PBDE ranged from 0.11 ± 0.15 cm s-1 (BDE-183) to 0.24 ± 0.38 cm s-1 (BDE-209), and total washout ratios ranged from 5.0 × 103 (BDE-28) to 4.2 × 104 (BDE-209). The calculated net air-soil gas exchange flux of Σ8PBDEs was - 16 ± 13 pg m-2 day-1, suggesting the deposition status of PBDEs. The gas exchange flux at the air-soil interface was significantly lower than the deposition flux, which only accounted for 2.5% of the total deposition flux, implying that atmospheric deposition was an important input pathway for PBDEs to soils. Overall, the pollution level of the soil was relatively low, and the soil serves as a sink for PBDEs from adjacent regions.


Asunto(s)
Éteres Difenilos Halogenados/análisis , Bifenilos Polibrominados/química , China , Monitoreo del Ambiente , Contaminación Ambiental , Éteres Difenilos Halogenados/química , Suelo
20.
Environ Sci Pollut Res Int ; 25(10): 9904-9914, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29374376

RESUMEN

We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.


Asunto(s)
Residuos Electrónicos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Biomasa , Colocasia/microbiología , Ácidos Grasos/análisis , Éteres de Glicerilo/análisis , Fosfolípidos/análisis , Suelo/química , Terpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA