RESUMEN
Several naked virus species, including members of the Picornaviridae family, have recently been described to escape their host cells and spread infection via enclosure in extracellular vesicles (EV). EV are 50-300 nm sized lipid membrane-enclosed particles produced by all cells that are broadly recognized for playing regulatory roles in numerous (patho)physiological processes, including viral infection. Both pro- and antiviral functions have been ascribed to EV released by virus-infected cells. It is currently not known whether this reported functional diversity is a result of the release of multiple virus-containing and non-virus containing EV subpopulations that differ in composition and function. Using encephalomyocarditis virus infection (EMCV, Picornaviridae family), we here provide evidence that EV populations released by infected cells are highly heterogeneous. Virus was contained in two distinct EV populations that differed in physical characteristics, such as sedimentation properties, and in enrichment for proteins indicative of different EV biogenesis pathways, such as the plasma membrane resident proteins Flotillin-1 and CD9, and the autophagy regulatory protein LC3. Additional levels of EV heterogeneity were identified using high-resolution flow cytometric analysis of single EV. Importantly, we demonstrate that EV subsets released during EMCV infection varied largely in potency of transferring virus infection and in their kinetics of release from infected cells. These data support the notion that heterogeneous EV populations released by virus-infected cells can exert diverse functions at distinct time points during infection. Unraveling the compositional, temporal and functional heterogeneity of these EV populations using single EV analysis technologies, as employed in this study, is vital to understanding the role of EV in virus dissemination and antiviral host responses.
Asunto(s)
Virus de la Encefalomiocarditis/metabolismo , Vesículas Extracelulares/fisiología , Vesículas Extracelulares/virología , Autofagia , Vesículas Extracelulares/metabolismo , Células HeLa , Humanos , Picornaviridae/metabolismo , Picornaviridae/patogenicidad , Infecciones por Picornaviridae/metabolismoRESUMEN
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
Asunto(s)
Variación Genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Animales , Células Cultivadas , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Estudios de Cohortes , Quinasas Ciclina-Dependientes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones Noqueados , Proteínas de Microfilamentos/genética , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Neoplasias de la Úvea , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Linfocitos Infiltrantes de Tumor , Inmunoterapia , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND: The objective was to assess secretion of small extracellular vesicular microRNA (exo-miRNA) in head and neck squamous cell carcinoma (HNSCC) according to human papillomavirus (HPV) status, and determine the translational potential as a liquid biopsy for early detection. METHODS: This study employed a combination of cell culture and case-control study design using archival pretreatment serum. Small extracellular vesicles (sEV) were isolated from conditioned culture media and human serum samples via differential ultracentrifugation. miRNA-sequencing was performed on each sEV isolate. RESULTS: There were clear exo-miRNA profiles that distinguished HNSCC cell lines from nonpathologic oral epithelial control cells. While there was some overlap among profiles across all samples, there were apparent differences in exo-miRNA profiles according to HPV-status. Importantly, differential exo-miRNA profiles were also apparent in serum from early-stage HNSCC cases relative to cancer-free controls. CONCLUSIONS: Our findings indicate that exo-miRNA are highly dysregulated in HNSCC and support the potential of exo-miRNA as biomarkers for HNSCC.
Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , MicroARNs/genética , Infecciones por Papillomavirus/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Estudios de Casos y Controles , Biopsia Líquida , Papillomaviridae/genéticaRESUMEN
In recent years the improvements in high-throughput gene expression analysis have led to the discovery of numerous non-protein-coding RNA (npcRNA) molecules. They form an abundant class of untranslated RNAs that have shown to play a crucial role in different biochemical pathways in the cell. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an efficient tool to measure RNA abundance and gene expression levels in tiny amounts of material. Despite its sensitivity, the lack of appropriate internal controls necessary for accurate data analysis is a limiting factor for its application in npcRNA research. Common internal controls applied are protein-coding reference genes, also termed "housekeeping" genes (HKGs). However, their expression levels reportedly vary among tissues and different experimental conditions. Moreover, application of HKGs as reference in npcRNA expression analyses is questionable, due to the differences in biogenesis. To address the issue of optimal RT-qPCR normalizers in npcRNA analysis, we performed a systematic evaluation of 18 npcRNAs along with four common HKGs in 20 different human tissues. To determine the most suitable internal control with least expression variance, four evaluation strategies, geNORM, NormFinder, BestKeeper, and the comparative delta C(q) method, were applied. Our data strongly suggest that five npcRNAs, which we term housekeeping RNAs (HKRs), exhibit significantly better constitutive expression levels in 20 different human tissues than common HKGs. Determined HKRs are ideal candidates for RT-qPCR data normalization in human transcriptome analysis, and might also be used as reference genes irrespective of the nature of the genes under investigation.
Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN no Traducido/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Secuencia de Bases , Cartilla de ADN/genética , Perfilación de la Expresión Génica/normas , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos , Control de Calidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricos , Distribución TisularRESUMEN
In a rare occasion a single chromosomal locus was targeted twice by independent Alu-related retroposon insertions, and in both cases supported neuronal expression of the respective inserted genes encoding small non-protein coding RNAs (npcRNAs): BC200 RNA in anthropoid primates and G22 RNA in the Lorisoidea branch of prosimians. To avoid primate experimentation, we generated transgenic mice to study neuronal expression and protein binding partners for BC200 and G22 npcRNAs. The BC200 gene, with sufficient upstream flanking sequences, is expressed in transgenic mouse brain areas comparable to those in human brain, and G22 gene, with upstream flanks, has a similar expression pattern. However, when all upstream regions of the G22 gene were removed, expression was completely abolished, despite the presence of intact internal RNA polymerase III promoter elements. Transgenic BC200 RNA is transported into neuronal dendrites as it is in human brain. G22 RNA, almost twice as large as BC200 RNA, has a similar subcellular localization. Both transgenically expressed npcRNAs formed RNP complexes with poly(A) binding protein and the heterodimer SRP9/14, as does BC200 RNA in human. These observations strongly support the possibility that the independently exapted npcRNAs have similar functions, perhaps in translational regulation of dendritic protein biosynthesis in neurons of the respective primates.
Asunto(s)
Neuronas/metabolismo , ARN no Traducido/metabolismo , Animales , Dendritas/química , Embrión de Mamíferos/metabolismo , Galago , Humanos , Ratones , Ratones Transgénicos , Proteínas de Unión a Poli(A)/metabolismo , Primates , Regiones Promotoras Genéticas , ARN no Traducido/análisis , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Distribución Tisular , Transcripción GenéticaRESUMEN
Serotonin 5-HT2C receptor is a G-protein coupled excitatory receptor that regulates several biochemical pathways and has been implicated in obesity, mental state, sleep cycles, autism, neuropsychiatric disorders and neurodegenerative diseases. The activity of 5-HT2CR is regulated via alternative splicing and A to I editing of exon Vb of its pre-mRNA. Snord115 is a small nucleolar RNA that is expressed in mouse neurons and displays an 18-nucleotide base complementary to exon Vb of 5-HT2CR pre-mRNA. For almost two decades this putative guide element of Snord115 has wandered like a ghost through the literature in attempts to elucidate the biological significance of this complementarity. In mice, Snord115 is expressed in neurons and absent in the choroid plexus where, in contrast, 5-Ht2cr mRNA is highly abundant. Here we report the analysis of 5-Ht2cr pre-mRNA posttranscriptional processing via RNA deep sequencing in a mouse model that ectopically expresses Snord115 in the choroid plexus. In contrast to previous reports, our analysis demonstrated that Snord115 does not control alternative splicing of 5-Ht2cr pre-mRNA in vivo. We identified a modest, yet statistically significant reduction of 5-Ht2cr pre-mRNA A to I editing at the major A, B, C and D sites. We suggest that Snord115 and exon Vb of 5Ht2cr pre-mRNA form a double-stranded structure that is subject to ADAR-mediated A to I editing. To the best of our knowledge, this is the first comprehensive Snord115 gain-of-function analysis based on in vivo mouse models.
Asunto(s)
ARN Nucleolar Pequeño/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Plexo Coroideo/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Mutantes , Edición de ARN/genética , Edición de ARN/fisiología , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Nucleolar Pequeño/genéticaRESUMEN
SUMMARY: The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. AVAILABILITY: The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/
Asunto(s)
Algoritmos , Gráficos por Computador , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Análisis por Conglomerados , Datos de Secuencia Molecular , Lenguajes de ProgramaciónRESUMEN
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
Asunto(s)
Síndrome de Prader-Willi/patología , ARN Nucleolar Pequeño/metabolismo , Animales , Northern Blotting , Southern Blotting , Encéfalo/metabolismo , Cromosomas Humanos Par 5 , Metilación de ADN , Modelos Animales de Enfermedad , Exones , Femenino , Técnicas de Sustitución del Gen , Sitios Genéticos , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Fenotipo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , ARN Nucleolar Pequeño/genéticaRESUMEN
Prader-Willi Syndrome (PWS) is a neurogenetic disorder caused by the deletion of imprinted genes on the paternally inherited human chromosome 15q11-q13. This locus harbours a long non-protein-coding RNA (U-UBE3A-ATS) that contains six intron-encoded snoRNAs, including the SNORD116 and SNORD115 repetitive clusters. The 3'-region of U-UBE3A-ATS is transcribed in the cis-antisense direction to the ubiquitin-protein ligase E3A (UBE3A) gene. Deletion of the SNORD116 region causes key characteristics of PWS. There are few indications that SNORD115 might regulate serotonin receptor (5HT2C) pre-mRNA processing. Here we performed quantitative real-time expression analyses of RNAs from the PWS locus across 20 human tissues and combined it with deep-sequencing data derived from Cap Analysis of Gene Expression (CAGE-seq) libraries. We found that the expression profiles of SNORD64, SNORD107, SNORD108 and SNORD116 are similar across analyzed tissues and correlate well with SNORD116 embedded U-UBE3A-ATS exons (IPW116). Notable differences in expressions between the aforementioned RNAs and SNORD115 together with the host IPW115 and UBE3A cis-antisense exons were observed. CAGE-seq analysis revealed the presence of potential transcriptional start sites originated from the U-UBE3A-ATS spanning region. Our findings indicate novel aspects for the expression regulation in the PWS locus.