Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047795

RESUMEN

Plants have their roots fixed in the soil, so they are unable to escape from adverse environments [...].


Asunto(s)
Regulación de la Expresión Génica , Plantas , Plantas/genética , Suelo , Raíces de Plantas/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361708

RESUMEN

Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.


Asunto(s)
Sequías , Estrés Fisiológico , Animales , Estrés Fisiológico/genética , Patrón de Herencia , Plantas/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Mamíferos/genética
3.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327661

RESUMEN

The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteína Fosfatasa 2C/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas/fisiología , Presión Osmótica/fisiología , Transducción de Señal/fisiología
4.
Biochem Biophys Res Commun ; 511(4): 931-934, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30851934

RESUMEN

AtLEA4-5 is a member of the group 4 late embryogenesis abundant (LEA) proteins, which are involved in the tolerance of water deficit in Arabidopsis thaliana. Chromatin immunoprecipitation assays revealed that the transcription factor AtMYB44 bound directly to the AtLEA4-5 gene promoter region under normal conditions, but was eliminated in response to osmotic stress (mannitol treatment). A quantitative reverse transcription PCR assay revealed that transcription of the AtLEA4-5 gene was induced in response to either salt (salinity) or mannitol (osmosis) treatment. The abiotic stress-induced increase in AtLEA4-5 transcripts was reduced in 35S:AtMYB44 transgenic plants, indicating that the transcription factor AtMYB44 represses gene transcription. More RNA polymerase II stalled at the transcription start site (TSS) of the AtLEA4-5 gene loci under osmotic stress, but the increment was reduced in the 35S:AtMYB44 plants. Histones are evicted from the promoter region under osmotic stress; however, histone eviction was hampered in the 35S:AtMYB44 plants. Under osmotic stress, the acetylated histones remaining at the TSS region was significantly lower in the 35S:AtMYB44 plants compared with wild-type plants. These results indicate that AtMYB44 suppresses polymerase-mediated transcription of the AtLEA4-5.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Chaperonas Moleculares/genética , Factores de Transcripción/metabolismo , Acetilación , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Histonas/metabolismo , Osmorregulación , Presión Osmótica , Regiones Promotoras Genéticas , Transcripción Genética
5.
Biochem Biophys Res Commun ; 499(4): 1039-1043, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29649476

RESUMEN

Transcripts of the Arabidopsis transcription factor gene, AtMYB44, accumulate rapidly to mediate a tolerance mechanism in response to salt stress. The AtMYB44 promoter is activated by salt stress, as illustrated in AtMYB44pro::GUS transgenic plants. Chromatin immunoprecipitation (ChIP) assays revealed that RNA polymerases were enriched on the AtMYB44 gene, especially on TSS-proximal regions, and nucleosome density was markedly reduced in the AtMYB44 gene-body region in response to salt stress. In addition, H2A.Z occupation was significantly decreased at the AtMYB44 promoter, transcription start site (TSS), and gene-body regions. Histone modifications including histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 and H4 acetylation (H3ac and H4ac) were not affected under the same stress conditions. We found a decrease in the number of AtMYB44 proteins bound to their own gene promoters in response to salt stress. These results suggest that salt stress induces the eviction of H2A.Z-containing nucleosomes from the AtMYB44 promoter region, which may weaken its affinity for binding AtMYB44 protein that acts as a repressor for AtMYB44 gene transcription under salt stress-free conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Histonas/metabolismo , Nucleosomas/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Factores de Transcripción/genética , Transcripción Genética , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 507(1-4): 437-442, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30448055

RESUMEN

AtMYB44 has been described in diverse hormonal signaling processes including abscisic acid (ABA)-mediated tolerance to abiotic stress; however, its function as a transcription factor is controversial. AtMYB44 contains the amino acid sequence LSLSL, a putative ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC REPRESSION (EAR) motif. In yeast two-hybrid assay, physical interaction between AtMYB44 and a TOPLESS-RELATED (TPR) corepressor was observed, but abolished by mutation of the EAR motif. We performed bimolecular fluorescence complementation assay to confirm their interaction in planta. Chromatin immunoprecipitation assay revealed binding of AtMYB44 to the promoter regions of clade A protein phosphatase 2C (PP2C) genes (e.g., ABI1, ABI2, and HAI1), implying putative targets. Levels of histone H3 acetylation around the promoter regions were markedly lower in AtMYB44-overexpressing (35S:AtMYB44) plants than in wild-type plants. These results suggest that AtMYB44 forms a complex with TPR corepressors and recruits histone deacetylase(s) to suppress PP2C gene transcription in a signal-independent manner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Co-Represoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Transcripción Genética , Acetilación , Sitios Genéticos , Histonas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Técnicas del Sistema de Dos Híbridos
7.
Plant J ; 65(6): 907-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21332845

RESUMEN

Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding. Transgenic over-expression of OsbHLH148 in rice confers plant tolerance to drought stress. Expression profiling followed by DNA microarray and RNA gel-blot analyses of transgenic versus wild-type rice identified genes that are up-regulated by OsbHLH148 over-expression. These include OsDREB and OsJAZ genes that are involved in stress responses and the jasmonate signaling pathway, respectively. OsJAZ1, a rice ZIM domain protein, interacted with OsbHLH148 in yeast two-hybrid and pull-down assays, but it interacted with the putative OsCOI1 only in the presence of coronatine. Furthermore, the OsJAZ1 protein was degraded by rice and Arabidopsis extracts in the presence of coronatine, and its degradation was inhibited by MG132, a 26S proteasome inhibitor, suggesting 26S proteasome-mediated degradation of OsJAZ1 via the SCF(OsCOI1) complex. The transcription level of OsJAZ1 increased upon exposure of rice to MeJA. These results show that OsJAZ1 could act as a transcriptional regulator of the OsbHLH148-related jasmonate signaling pathway leading to drought tolerance. Thus, our study suggests that OsbHLH148 acts on an initial response of jasmonate-regulated gene expression toward drought tolerance, constituting the OsbHLH148-OsJAZ-OsCOI1 signaling module in rice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Oryza/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Plantas/genética , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Transducción de Señal , Estrés Fisiológico , Regulación hacia Arriba
8.
New Phytol ; 190(1): 57-74, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21231936

RESUMEN

Arabidopsis RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatases regulate stress-responsive gene expression and plant development via the dephosphorylation of serine (Ser) residues of the CTD. Some of these phosphatases (CTD phosphatase-like 1 (CPL1) to CPL3) negatively regulate ABA and stress responses. Here, we isolated AtCPL5, a cDNA encoding a protein containing two CTD phosphatase domains (CPDs). To characterize AtCPL5, we analyzed the gene expression patterns and subcellular protein localization, investigated various phenotypes of AtCPL5-overexpressors and knockout mutants involved in ABA and drought responses, performed microarray and RNA hybridization analyses using AtCPL5-overexpressors, and assessed the CTD phosphatase activities of the purified AtCPL5 and each CPD of the protein. Transcripts of the nucleus-localized AtCPL5 were induced by ABA and drought. AtCPL5-overexpressors exhibited ABA-hypersensitive phenotypes (increased inhibition of seed germination, seedling growth, and stomatal aperture), lower transpiration rates upon dehydration, and enhanced drought tolerance, while the knockout mutants showed weak ABA hyposensitivity. AtCPL5 overexpression changed the expression of numerous genes, including those involved in ABA-mediated responses. In contrast to Ser-5-specific phosphatase activity of the negative stress response regulators, purified AtCPL5 and each CPD of the protein specifically dephosphorylated Ser-2 in RNAPII CTD. We conclude that AtCPL5 is a unique CPL family protein that positively regulates ABA-mediated development and drought responses in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Sequías , Fosfoserina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Filogenia , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Genes (Basel) ; 12(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680997

RESUMEN

The current global climate crisis has led to drought, high salinity, and abnormaltemperatures (heat and cold), and is a serious threat to crop productivity. [...].


Asunto(s)
Sequías , Estrés Fisiológico , Epigénesis Genética , Plantas/genética , Salinidad
10.
Front Genet ; 11: 576086, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193691

RESUMEN

Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.

11.
Mol Cells ; 27(1): 75-81, 2009 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-19214436

RESUMEN

The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven beta-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Quitina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Lectinas de Plantas/genética , Regulación hacia Arriba/efectos de los fármacos , Acetatos/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Northern Blotting , Ciclopentanos/farmacología , Etilenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Oxilipinas/farmacología , Lectinas de Plantas/química , Transducción de Señal/efectos de los fármacos
12.
Plant Physiol Biochem ; 141: 325-331, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207493

RESUMEN

Type 2C protein phosphatases (PP2Cs) counteract protein kinases, thereby inhibiting the abscisic acid (ABA)-mediated response to abiotic stress in Arabidopsis thaliana. In the absence of stress, the promoters of PP2C genes (e.g., ABI1, ABI2, and HAI1) are negatively regulated by repressors that suppress gene transcription in a signal-independent manner. Quantitative reverse transcription PCR (RT-qPCR) and chromatin immunoprecipitation (ChIP) assays revealed that the levels of PP2C gene transcripts and RNA polymerase II (RNAPII) that stalled at the transcription start sites (TSS) of PP2C gene loci were increased under salt stress. The salt-induced increases in RNA polymerase-mediated transcription were reduced in 35S:AtMYB44 plants, confirming that AtMYB44 acts as a repressor of PP2C gene transcription. ChIP assays revealed that AtMYB44 repressors are released and nucleosomes are evicted from the promoter regions in response to salt stress. Under these conditions, histone H3 acetylation (H3ac) and methylation (H3K4me3) around the TSS regions significantly increased. The salt-induced increases in PP2C gene transcription were reduced in abf3 plants, indicating that ABF3 activates PP2C gene transcription. Overall, our data indicate that salt stress converts PP2C gene chromatin from a repressor-associated suppression status to an activator-mediated transcription status. In addition, we observed that the Arabidopsis mutant brm-3, which is moderately defective in SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) activity, produced more PP2C gene transcripts under salt stress conditions, indicating that BRM ATPase contributes to the repression of PP2C gene transcription.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/química , Nucleosomas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Estrés Salino , Adenosina Trifosfato/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-18255361

RESUMEN

We developed a quantitative method for the determination of methyl esterase activity, analyzing substrate specificity against three major signal molecules, jasmonic acid methyl ester (MeJA), salicylic acid methyl ester (MeSA), and indole-3-acetic acid methyl ester (MeIAA). We used a silylation reagent for chemical derivatization and used gas chromatography (GC)-mass spectroscopy in analyses, for high precision. To test this method, an Arabidopsis esterase gene, AtME8, was expressed in Escherichia coli, and then the kinetic parameters of the recombinant enzyme were determined for three substrates. Finally, this method was also applied to the direct quantification of phytohormones in petals from lilies and roses.


Asunto(s)
Hidrolasas de Éster Carboxílico/análisis , Arabidopsis/química , Cromatografía en Capa Delgada , Escherichia coli/química , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Cinética , Reguladores del Crecimiento de las Plantas/análisis , Plantas/química , Estándares de Referencia , Compuestos de Trimetilsililo
14.
J Microbiol Biotechnol ; 18(9): 1544-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18852510

RESUMEN

MhMTS and MhMTH are trehalose (alpha-D-glucopyranosyl- [1,1]-alpha-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused inframe in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around 70 degrees and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at 70 degrees for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above 80 degrees . The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.


Asunto(s)
Glucosidasas/metabolismo , Glucosiltransferasas/metabolismo , Sulfolobaceae/enzimología , Trehalosa/biosíntesis , Cromatografía por Intercambio Iónico , Cromatografía en Capa Delgada , Clonación Molecular , Escherichia coli/genética , Glucosidasas/genética , Glucosiltransferasas/genética , Calor , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Almidón/metabolismo , Sulfolobaceae/genética
15.
Plant Physiol Biochem ; 130: 14-19, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29957571

RESUMEN

AtMYB44 transcripts accumulate non-specifically under diverse stress conditions and with various phytohormone treatments in Arabidopsis thaliana. We investigated the chromatin modifications caused by various signals to uncover the induction mechanism of AtMYB44 transcription. Bisulfite sequencing confirmed a previous database illustrating that the AtMYB44 promoter and gene-body regions are completely DNA methylation-free. Chromatin immunoprecipitation (ChIP) assays revealed that the nucleosome density is remarkably low at the AtMYB44 promoter region. Thus, the promoter region appears to be highly accessible for various trans-acting factors. ChIP assays revealed that osmotic stress (mannitol treatment) lowered the nucleosome density at the gene-body regions, while abscisic acid (ABA) or jasmonic acid (JA) treatment did so at the proximal transcription start site (TSS) region. In response to mannitol treatment, histone H3 lysine 4 trimethylation (H3K4me3) and H3 acetylation (H3ac) levels within the promoter, TSS, and gene-body regions of AtMYB44 were significantly increased. However, occupancy of histone variant H2A.Z was not affected by the mannitol treatment. We previously reported that salt stress triggered a significant decrease in H2A.Z occupation without affecting the H3K4me3 and H3ac levels. In combination, our data suggest that each signal transduced to the highly accessible promoter induces a different chromatin modification for AtMYB44 transcription.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , Ciclopentanos/farmacología , Metilación de ADN , Manitol/farmacología , Mutación , Nucleosomas , Presión Osmótica , Oxilipinas/farmacología , Regiones Promotoras Genéticas , Transducción de Señal , Cloruro de Sodio/farmacología , Factores de Transcripción/genética , Transcripción Genética , Agua
16.
Mol Cells ; 41(8): 781-798, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30078233

RESUMEN

Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.


Asunto(s)
Proteínas de Homeodominio/genética , Oryza/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Sequías , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
17.
Trends Genet ; 19(7): 409-13, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12850447

RESUMEN

The plant floral scent methyl jasmonate (MeJA) has been identified as a vital cellular regulator that mediates diverse developmental processes and defense responses against biotic and abiotic stresses. The pleiotropic effects of MeJA have raised numerous questions about its regulation for biogenesis and mode of action. Characterization of the gene encoding jasmonic acid carboxyl methyltransferase has provided basic information on the role(s) of this phytohormone in gene-activation control and systemic long-distance signaling. Recent approaches using functional genomics and bioinformatics have identified a whole set of MeJA-responsive genes, and provide insights into how plants use volatile signals to withstand diverse and variable environments.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Jasminum/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxilipinas , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología
18.
Mol Cells ; 24(2): 301-6, 2007 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17978586

RESUMEN

Tocopherols, essential components of the human diet, are synthesized exclusively by photosynthetic organisms. To increase tocopherol content by increasing total flux to the tocopherol biosynthetic pathway, genes encoding Arabidopsis homogentisate phytyltransferase (HPT/V-TE2) and tocopherol cyclase (TC/VTE1) were constitutively overexpressed in lettuce (Lactuca sativa L.). Total tocopherol content of the transgenic plants overexpressing either of the genes was increased by more than 2-fold mainly due to an increase in gamma-tocopherol. However, chlorophyll content in the HPT/VTE2 and TC/VTE1 transgenic lines decreased by up to 20% and increased by up to 35%, respectively (P < 0.01). These results demonstrate that manipulation of the tocopherol biosynthetic pathway can increase or decrease chlorophyll content depending on the gene introduced.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Transferasas Intramoleculares/metabolismo , Lactuca/genética , Lactuca/metabolismo , Tocoferoles/metabolismo , gamma-Tocoferol/metabolismo , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , ADN de Plantas , Alimentos Modificados Genéticamente , Expresión Génica , Genoma de Planta , Transferasas Intramoleculares/genética , Plantas Modificadas Genéticamente , Rhizobium , Transformación Genética , Transgenes , gamma-Tocoferol/química
19.
J Microbiol Biotechnol ; 17(1): 123-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18051363

RESUMEN

The trehalose (alpha-D-glucopyranosyl-[1,1]-alpha-D-glucopyranose) biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 degrees C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at 70 degrees C for 48 h, but was gradually abolished by incubating at above 85 degrees C. Addition of thermostable 4-alpha-glucanotransferase increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.


Asunto(s)
Genes Arqueales , Sulfolobaceae/genética , Sulfolobaceae/metabolismo , Trehalosa/biosíntesis , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/genética , ADN de Archaea/genética , Estabilidad de Enzimas , Escherichia coli/genética , Glucosidasas/genética , Glucosidasas/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Calor , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Almidón/metabolismo , Especificidad por Sustrato , Sulfolobaceae/enzimología , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Trehalosa/genética
20.
Mol Cells ; 21(3): 401-10, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16819304

RESUMEN

The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.


Asunto(s)
Marcadores Genéticos , Oryza/genética , Plastidios/genética , Transformación Genética , Transgenes/genética , Western Blotting , Cloroplastos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA