Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Metab ; 134(4): 309-316, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823997

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin, and leading to multi-organ degeneration including kidney failure. A clinical trial for cystinosis is ongoing to test the safety and efficacy of transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) ex vivo gene-modified to introduce functional CTNS cDNA. Preclinical studies in Ctns-/- mice previously showed that a single HSPC transplantation led to significant tissue cystine decrease and long-term tissue preservation. The main mechanism of action involves the differentiation of the transplanted HSPCs into macrophages within tissues and transfer of cystinosin-bearing lysosomes to the diseased cells via tunneling nanotubes. However, a major concern was that the most common cystinosis-causing mutation in humans is a 57-kb deletion that eliminates not only CTNS but also the adjacent sedopheptulose kinase SHPK/CARKL gene encoding a metabolic enzyme that influences macrophage polarization. Here, we investigated if absence of Shpk could negatively impact the efficiency of transplanted HSPCs to differentiate into macrophages within tissues and then to prevent cystinosis rescue. We generated Shpk knockout mouse models and detected a phenotype consisting of perturbations in the pentose phosphate pathway (PPP), the metabolic shunt regulated by SHPK. Shpk-/- mice also recapitulated the urinary excretion of sedoheptulose and erythritol found in cystinosis patients homozygous for the 57-kb deletion. Transplantation of Shpk-/--HSPCs into Ctns-/- mice resulted in significant reduction in tissue cystine load and restoration of Ctns expression, as well as improved kidney architecture comparable to WT-HSPC recipients. Altogether, these data demonstrate that absence of SHPK does not alter the ability of HSPCs to rescue cystinosis, and then patients homozygous for the 57-kb deletion should benefit from ex vivo gene therapy and can be enrolled in the ongoing clinical trial. However, because of the limits inherent to animal models, outcomes of this patient population will be carefully compared to the other enrolled subjects.


Asunto(s)
Cistinosis/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Diferenciación Celular , Cistinosis/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Células Madre Hematopoyéticas/citología , Metabolómica , Ratones , Ratones Endogámicos C57BL , Vía de Pentosa Fosfato , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
2.
Kidney Int ; 96(2): 350-362, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30928021

RESUMEN

Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the ß-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinosis/complicaciones , Síndrome de Fanconi/inmunología , Galectina 3/metabolismo , Inflamación/inmunología , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Cistina/metabolismo , Cistinosis/inmunología , Cistinosis/metabolismo , Cistinosis/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patología , Femenino , Galectina 3/genética , Humanos , Inflamación/metabolismo , Inflamación/patología , Túbulos Renales Proximales/inmunología , Túbulos Renales Proximales/patología , Lisosomas/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Monocitos/inmunología , Proteolisis
3.
Pediatr Nephrol ; 34(6): 965-973, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29789935

RESUMEN

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). Initial symptoms of cystinosis correspond to the renal Fanconi syndrome. Patients then develop chronic kidney disease and multi-organ failure due to accumulation of cystine in all tissue compartments. LSDs are commonly characterized by a defective activity of lysosomal enzymes. Hematopoietic stem and progenitor cell (HSPC) transplantation is a treatment option for several LSDs based on the premise that their progeny will integrate in the affected tissues and secrete the functional enzyme, which will be recaptured by the surrounding deficient cells and restore physiological activity. However, in the case of cystinosis, the defective protein is a transmembrane lysosomal protein, cystinosin. Thus, cystinosin cannot be secreted, and yet, we showed that HSPC transplantation can rescue disease phenotype in the mouse model of cystinosis. In this review, we are describing a different mechanism by which HSPC-derived cells provide cystinosin to diseased cells within tissues, and how HSPC transplantation could be an effective one-time treatment to treat cystinosis but also other LSDs associated with a lysosomal transmembrane protein dysfunction.


Asunto(s)
Cistinosis/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Humanos
4.
J Biol Chem ; 292(25): 10328-10346, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28465352

RESUMEN

The lysosomal storage disease cystinosis, caused by cystinosin deficiency, is characterized by cell malfunction, tissue failure, and progressive renal injury despite cystine-depletion therapies. Cystinosis is associated with defects in chaperone-mediated autophagy (CMA), but the molecular mechanisms are incompletely understood. Here, we show CMA substrate accumulation in cystinotic kidney proximal tubule cells. We also found mislocalization of the CMA lysosomal receptor LAMP2A and impaired substrate translocation into the lysosome caused by defective CMA in cystinosis. The impaired LAMP2A trafficking and localization were rescued either by the expression of wild-type cystinosin or by the disease-associated point mutant CTNS-K280R, which has no cystine transporter activity. Defective LAMP2A trafficking in cystinosis was found to associate with decreased expression of the small GTPase Rab11 and the Rab7 effector RILP. Defective Rab11 trafficking in cystinosis was rescued by treatment with small-molecule CMA activators. RILP expression was restored by up-regulation of the transcription factor EB (TFEB), which was down-regulated in cystinosis. Although LAMP2A expression is independent of TFEB, TFEB up-regulation corrected lysosome distribution and lysosomal LAMP2A localization in Ctns-/- cells but not Rab11 defects. The up-regulation of Rab11, Rab7, or RILP, but not its truncated form RILP-C33, rescued LAMP2A-defective trafficking in cystinosis, whereas dominant-negative Rab11 or Rab7 impaired LAMP2A trafficking. Treatment of cystinotic cells with a CMA activator increased LAMP2A localization at the lysosome and increased cell survival. Altogether, we show that LAMP2A trafficking is regulated by cystinosin, Rab11, and RILP and that CMA up-regulation is a potential clinically relevant mechanism to increase cell survival in cystinosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinosis/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Cistinosis/genética , Cistinosis/patología , Activadores de Enzimas/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Lisosomas/genética , Ratones , Ratones Noqueados , Mutación Puntual , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/biosíntesis , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
5.
Stem Cells ; 33(1): 301-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25186209

RESUMEN

Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Lisosomas/metabolismo , Macrófagos/citología , Nanotubos , Animales , Cistinosis/metabolismo , Cistinosis/patología , Cistinosis/terapia , Fibroblastos , Células Madre Hematopoyéticas/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
6.
J Am Soc Nephrol ; 25(6): 1163-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24525029

RESUMEN

Intralysosomal cystine crystal accumulation, due to mutations in the CTNS gene, is a hallmark of nephropathic cystinosis, but the role of these crystals in disease pathogenesis remains unclear. We hypothesized that, similar to other host-derived crystalline moieties, cystine crystals can induce IL-1ß production through inflammasome activation. Thus, we investigated the proinflammatory effects of cystine crystals in primary human PBMCs. LPS-primed PBMCs stimulated with cystine crystals secreted IL-1ß in a dose-dependent manner. Similarly to IL-1ß secretion induced by other crystalline inflammasome activators, cystine crystal-induced IL-1ß secretion required activation of caspase-1. Additionally, exogenous cystine crystals were internalized by monocytes, and inhibition of phagocytosis, cathepsin B leakage, generation of reactive oxygen species, and potassium efflux reduced cystine crystal-induced IL-1ß secretion. Patients with cystinosis had higher levels of circulating IL-1ß and IL-18 compared with controls. Analysis of inflammasome-related gene expression in PBMCs from patients with cystinosis revealed a significant increase in IL-1ß and CASP-1 transcript levels compared with controls. Moreover, knockout of cystinosin in mice led to significant increases in serum IL-18 levels and kidney expression of inflammasome-related genes (Casp-1, Pycard, Il-18, Il18r1, Il1r1, and Il1rl2). Taken together, these data demonstrate that cystine crystals are endogenous inflammasome-activating stimuli, suggesting a novel role for cystine crystals in the pathogenesis of nephropathic cystinosis.


Asunto(s)
Cistina/química , Cistina/metabolismo , Cistinosis/inmunología , Inflamasomas/metabolismo , Leucocitos Mononucleares/inmunología , Insuficiencia Renal Crónica/inmunología , Adolescente , Adulto , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Células Cultivadas , Niño , Preescolar , Cristalización , Cistinosis/etiología , Cistinosis/genética , Humanos , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Adulto Joven
7.
J Am Soc Nephrol ; 25(6): 1256-69, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24525030

RESUMEN

Cystinosis, a main cause of Fanconi syndrome, is reproduced in congenic C57BL/6 cystinosin knockout (KO) mice. To identify the sequence of pathogenic and adaptation mechanisms of nephropathic cystinosis, we defined the onset of Fanconi syndrome in KO mice between 3 and 6 months of age and analyzed the correlation with structural and functional changes in proximal tubular cells (PTCs), with focus on endocytosis of ultrafiltrated disulfide-rich proteins as a key source of cystine. Despite considerable variation between mice at the same age, typical event sequences were delineated. At the cellular level, amorphous lysosomal inclusions preceded cystine crystals and eventual atrophy without crystals. At the nephron level, lesions started at the glomerulotubular junction and then extended distally. In situ hybridization and immunofluorescence revealed progressive loss of expression of megalin, cubilin, sodium-glucose cotransporter 2, and type IIa sodium-dependent phosphate cotransporter, suggesting apical dedifferentiation accounting for Fanconi syndrome before atrophy. Injection of labeled proteins revealed that defective endocytosis in S1 PTCs led to partial compensatory uptake by S3 PTCs, suggesting displacement of endocytic load and injury by disulfide-rich cargo. Increased PTC apoptosis allowed luminal shedding of cystine crystals and was partially compensated for by tubular proliferation. We conclude that lysosomal storage triggered by soluble cystine accumulation induces apical PTC dedifferentiation, which causes transfer of the harmful load of disulfide-rich proteins to more distal cells, possibly explaining longitudinal progression of swan-neck lesions. Furthermore, our results suggest that subsequent adaptation mechanisms include lysosomal clearance of free and crystalline cystine into urine and ongoing tissue repair.


Asunto(s)
Adaptación Fisiológica/fisiología , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinosis/fisiopatología , Síndrome de Fanconi/fisiopatología , Túbulos Renales Proximales/fisiopatología , Animales , Apoptosis/fisiología , Proliferación Celular , Cristalización , Cistina/química , Cistina/metabolismo , Cistinosis/genética , Cistinosis/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endocitosis/fisiología , Síndrome de Fanconi/genética , Síndrome de Fanconi/patología , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lisosomas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteinuria/genética , Proteinuria/patología , Proteinuria/fisiopatología , Receptores de Superficie Celular/genética , Vacuolas/patología
8.
Nephrol Dial Transplant ; 29(3): 522-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23861466

RESUMEN

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The defective gene is CTNS, which encodes the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. In this review, we outline the studies that support that genetic rescue of cystinosis could be an achievable goal, even though cystinosis is a multi-compartmental disease and cystinosin an intracellular transmembrane protein. Using the mouse model of cystinosis, the Ctns(-/-) mice, we showed that transplanted hematopoietic stem cells (HSCs) were able to act as vehicles for the delivery of a functional Ctns gene to the different organs and led to the significant decrease of the tissue cystine content and tissue preservation. Ex vivo gene-modified Ctns(-/-) HSC transplantation using a lentiviral vector containing CTNS complementary DNA (cDNA) was also successful in the Ctns(-/-) mice and built the foundations for a clinical trial for autologous HSC transplantation for cystinosis. The capacity of HSCs for rescuing non-hematopoietic disease is controversial, and new insights into regenerative medicine could be gained from unraveling the underlying mechanism of action.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinosis/terapia , Terapia Genética , Sistemas de Transporte de Aminoácidos Neutros/biosíntesis , Animales , Cistinosis/genética , Técnicas de Transferencia de Gen , Objetivos , Trasplante de Células Madre Hematopoyéticas , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Noqueados
9.
Nephrol Dial Transplant ; 29 Suppl 4: iv87-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25165189

RESUMEN

Cystinosis is caused by mutations in the CTNS gene (17p13.2), which encodes for a lysosomal cystine/proton symporter termed cystinosin. It is the most common cause of inherited renal Fanconi syndrome in young children. Because of its rarity, the diagnosis and specific treatment of cystinosis are frequently delayed, which has a significant impact on the overall prognosis. In this document, we have summarized expert opinions on several aspects of the disease to improve knowledge and provide guidance for diagnosis and treatment.


Asunto(s)
Cistinosis/diagnóstico , Cistinosis/terapia , Niño , Cistinosis/genética , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/terapia , Humanos , Guías de Práctica Clínica como Asunto , Sociedades Médicas
10.
Mol Ther ; 21(2): 433-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23089735

RESUMEN

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. Using the Ctns(-/-) murine model for cystinosis, we tested the use of hematopoietic stem and progenitor cells (HSPC) genetically modified to express a functional CTNS transgene using a self-inactivating-lentiviral vector (SIN-LV). We showed that transduced cells were capable of decreasing cystine content in all tissues and improved kidney function. Transduced HSPC retained their differentiative capabilities, populating all tissue compartments examined and allowing long-term expression of the transgene. Direct correlation between the levels of lentiviral DNA present in the peripheral blood and the levels present in tissues were demonstrated, which could be useful to follow future patients. Using a new model of cystinosis, the DsRed Ctns(-/-) mice, and a LV driving the expression of the fusion protein cystinosin-enhanced green fluorescent protein (eGFP), we showed that cystinosin was transferred from CTNS-expressing cells to Ctns-deficient adjacent cells in vitro and in vivo. This transfer led to cystine decreases in Ctns-deficient cells in vitro. These data suggest that the mechanism of cross-correction is possible in cystinosis.


Asunto(s)
Cistinosis/fisiopatología , Cistinosis/terapia , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Western Blotting , Cistina/análisis , Cistina/metabolismo , Cistinosis/genética , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Fallo Renal Crónico/genética , Fallo Renal Crónico/patología , Lentivirus/genética , Proteínas Luminiscentes/metabolismo , Lisosomas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética , Transgenes
11.
Front Pharmacol ; 15: 1323491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420191

RESUMEN

Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.

12.
Med Sci (Paris) ; 39(3): 253-261, 2023 Mar.
Artículo en Francés | MEDLINE | ID: mdl-36943122

RESUMEN

Cystinosis is an autosomal recessive metabolic disease characterized by lysosomal accumulation of cystine in all the cells of the body. Infantile cystinosis begins in infancy by a renal Fanconi syndrome and eventually leads to multi-organ failure, including the kidney, eye, thyroid, muscle, and pancreas, eventually causing premature death in early adulthood. The current treatment is the drug cysteamine that only delays the progression of the disease. We identified the gene involved, CTNS, and showed that the encoded protein, cystinosin, is a proton-driven cystine transporter. We generated a mouse model of cystinosis, the Ctns-/- mice, that recapitulates the main disease complications. The goal was next to develop a gene therapy approach for cystinosis. We used bone marrow stem cells as a vehicle to bring the healthy CTNS gene to tissues, and we showed that wild-type hematopoietic stem and progenitor cell (HSPC) transplantation led to abundant tissue integration of bone marrow-derived cells, significant decrease of tissue cystine accumulation and long-term kidney, eye and thyroid preservation. We then developed an autologous transplantation approach of HSPCs modified ex vivo using a lentiviral vector to introduce a functional CTNS cDNA, and showed its efficacy in Ctns-/- mice. We conducted the pharmacology/toxicology studies, developed the manufacturing process using human CD34+ cells, and design the clinical trial. We received Food and Drug Administration (FDA)-clearance to start a phase 1/2 clinical trial for cystinosis in December 2018. Six patients have been treated so far. In this review, we describe the path to go from the gene to a gene therapy approach for cystinosis.


Title: Cystinose - De la découverte du gène aux premiers essais de thérapie génique. Abstract: La cystinose est une maladie métabolique autosomique récessive caractérisée par une accumulation lysosomale de cystine dans toutes les cellules de l'organisme. La cystinose infantile débute dans la petite enfance par un syndrome de Fanconi et aboutit à une détérioration progressive de la fonction de la plupart des organes, y compris les reins, les yeux, la thyroïde, les muscles et le pancréas, et finit par entraîner une mort prématurée. Le traitement par la cystéamine ne permet que de retarder la progression de la maladie. Afin de développer une approche de thérapie génique pour la cystinose, un modèle murin qui présente les principales complications de la maladie a été développé grâce à l'identification du gène CTNS, dont le produit, la cystinosine, est un co-transporteur de cystine-protons. Cette revue décrit les étapes allant de la découverte du gène à la thérapie génique pour la cystinose, qui a permis de traiter six patients jusqu'à présent.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Adulto , Animales , Humanos , Ratones , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Cisteamina/uso terapéutico , Cisteamina/efectos adversos , Cistina/genética , Cistina/metabolismo , Cistina/uso terapéutico , Cistinosis/genética , Cistinosis/terapia , Cistinosis/complicaciones , Terapia Genética/efectos adversos , Riñón , Ensayos Clínicos como Asunto
13.
Cell Rep ; 42(8): 112956, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561625

RESUMEN

Alzheimer's disease (AD) is the most prevalent cause of dementia; microglia have been implicated in AD pathogenesis, but their role is still matter of debate. Our study showed that single systemic wild-type (WT) hematopoietic stem and progenitor cell (HSPC) transplantation rescued the AD phenotype in 5xFAD mice and that transplantation may prevent microglia activation. Indeed, complete prevention of memory loss and neurocognitive impairment and decrease of ß-amyloid plaques in the hippocampus and cortex were observed in the WT HSPC-transplanted 5xFAD mice compared with untreated 5xFAD mice and with mice transplanted with 5xFAD HSPCs. Neuroinflammation was also significantly reduced. Transcriptomic analysis revealed a significant decrease in gene expression related to "disease-associated microglia" in the cortex and "neurodegeneration-associated endothelial cells" in the hippocampus of the WT HSPC-transplanted 5xFAD mice compared with diseased controls. This work shows that HSPC transplant has the potential to prevent AD-associated complications and represents a promising therapeutic avenue for this disease.


Asunto(s)
Enfermedad de Alzheimer , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Fenotipo , Modelos Animales de Enfermedad
14.
J Biol Chem ; 286(48): 41489-41498, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21890638

RESUMEN

The superficial zone (SZ) of articular cartilage is critical in maintaining tissue function and homeostasis and represents the site of the earliest changes in osteoarthritis (OA). The expression of chromatin protein HMGB2 is restricted to the SZ, which contains cells expressing mesenchymal stem cell (MSC) markers. Age-related loss of HMGB2 and gene deletion are associated with reduced SZ cellularity and early onset OA. This study addressed HMGB2 expression patterns in MSC and its role during differentiation. HMGB2 was detected at higher levels in human MSC as compared with human articular chondrocytes, and its expression declined during chondrogenic differentiation of MSC. Lentiviral HMGB2 transduction of MSC suppressed chondrogenesis as reflected by an inhibition of Col2a1 and Col10a1 expression. Conversely, in bone marrow MSC from Hmgb2(-/-) mice, Col10a1 was more strongly expressed than in wild-type MSC. This is consistent with in vivo results from mouse growth plates showing that Hmgb2 is expressed in proliferating and prehypertrophic zones but not in hypertrophic cartilage where Col10a1 is strongly expressed. Osteogenesis was also accelerated in Hmgb2(-/-) MSC. The expression of Runx2, which plays a major role in late stage chondrocyte differentiation, was enhanced in Hmgb2(-/-) MSC, and HMGB2 negatively regulated the stimulatory effect of Wnt/ß-catenin signaling on the Runx2 proximal promoter. These results demonstrate that HMGB2 expression is inversely correlated with the differentiation status of MSC and that HMGB2 suppresses chondrogenic differentiation. The age-related loss of HMGB2 in articular cartilage may represent a mechanism responsible for the decline in adult cartilage stem cell populations.


Asunto(s)
Células Madre Adultas/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Condrogénesis/fisiología , Proteína HMGB2/biosíntesis , Células Madre Mesenquimatosas/metabolismo , Células Madre Adultas/citología , Animales , Cartílago Articular/citología , Condrocitos/citología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica/fisiología , Proteína HMGB2/genética , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Osteogénesis/fisiología , Regiones Promotoras Genéticas/fisiología , Vía de Señalización Wnt/fisiología
15.
Kidney Int ; 81(2): 127-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22205430

RESUMEN

Cystinosis as a clinical entity is a progressive dysfunction of multiple organs caused by the accumulation of cystine in the tissues, leading, for example, to end-stage renal failure, diabetes, hypothyroidism, myopathy, and central nervous system deterioration. Brodin-Sartorius and colleagues present a long-term study on the impact of cysteamine therapy on these complications. The data show that cysteamine improves the outcome and complications of cystinosis but does not prevent them.


Asunto(s)
Trasplante de Médula Ósea , Cistinosis/cirugía , Trasplante de Células Madre Hematopoyéticas , Enfermedades Renales/prevención & control , Riñón/patología , Animales
16.
Front Genome Ed ; 4: 903139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663795

RESUMEN

Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.

17.
Autophagy ; 18(5): 1108-1126, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34643468

RESUMEN

The dynein motor protein complex is required for retrograde transport but the functions of the intermediate-light chains that form the cargo-binding complex are not elucidated and the importance of individual subunits in maintaining cellular homeostasis is unknown. Here, using mRNA arrays and protein analysis, we show that the dynein subunit, DYNC1LI2 (dynein, cytoplasmic 1 light intermediate chain 2) is downregulated in cystinosis, a lysosomal storage disorder caused by genetic defects in CTNS (cystinosin, lysosomal cystine transporter). Reconstitution of DYNC1LI2 expression in ctns-/- cells reestablished endolysosomal dynamics. Defective vesicular trafficking in cystinotic cells was rescued by DYNC1LI2 expression which correlated with decreased endoplasmic reticulum stress manifested as decreased expression levels of the chaperone HSPA5/GRP78, and the transcription factors ATF4 and DDIT3/CHOP. Mitochondrial fragmentation, membrane potential and endolysosomal-mitochondrial association in cystinotic cells were rescued by DYNC1LI2. Survival of cystinotic cells to oxidative stress was increased by DYNC1LI2 reconstitution but not by its paralog DYNC1LI1, which also failed to decrease ER stress and mitochondrial fragmentation. DYNC1LI2 expression rescued the localization of the chaperone-mediated autophagy (CMA) receptor LAMP2A, CMA activity, cellular homeostasis and LRP2/megalin expression in cystinotic proximal tubule cells, the primary cell type affected in cystinosis. DYNC1LI2 failed to rescue phenotypes in cystinotic cells when LAMP2A was downregulated or when co-expressed with dominant negative (DN) RAB7 or DN-RAB11, which impaired LAMP2A trafficking. DYNC1LI2 emerges as a regulator of cellular homeostasis and potential target to repair underlying trafficking and CMA in cystinosis, a mechanism that is not restored by lysosomal cystine depletion therapies.Abbreviations: ACTB: actin, beta; ATF4: activating transcription factor 4; CMA: chaperone-mediated autophagy; DYNC1LI1: dynein cytoplasmic 1 light intermediate chain 1; DYNC1LI2: dynein cytoplasmic 1 light intermediate chain 2; ER: endoplasmic reticulum; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; LIC: light-intermediate chains; LRP2/Megalin: LDL receptor related protein 2; PTCs: proximal tubule cells; RAB: RAB, member RAS oncogene family; RAB11FIP3: RAB11 family interacting protein 3; RILP: Rab interacting lysosomal protein.


Asunto(s)
Autofagia Mediada por Chaperones , Cistinosis , Dineínas Citoplasmáticas , Proteína 2 de la Membrana Asociada a los Lisosomas , Autofagia , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Homeostasis , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo
18.
Kidney Int ; 79(11): 1198-206, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21248718

RESUMEN

The prospect of cell-based therapy for kidney disease remains controversial despite its immense promise. We had previously shown that transplanting bone marrow and hematopoietic stem cells could generate renal cells and lead to the preservation of kidney function in a mouse model for cystinosis (Ctns(-/-)) that develops chronic kidney injury, 4 months post transplantation. Here, we determined the long-term effects of bone marrow stem cell transplantation on the kidney disease of Ctns(-/-) mice 7 to 15 months post transplantation. Transfer of bone marrow stem cells expressing a functional Ctns gene provided long-term protection to the kidney. Effective therapy, however, depended on achieving a relatively high level of donor-derived blood cell engraftment of Ctns-expressing cells, which was directly linked to the quantity of these cells within the kidney. In contrast, kidney preservation was dependent neither on renal cystine content nor on the age of the mice at the time of transplant. Most of the bone marrow-derived cells within the kidney were interstitial and not epithelial, suggesting that the mechanism involved an indirect protection of the tubules. Thus, our model may help in developing strategies to enhance the potential success of cell-based therapy for kidney injury and in understanding some of the discrepancies currently existing in the field.


Asunto(s)
Trasplante de Médula Ósea , Cistinosis/cirugía , Trasplante de Células Madre Hematopoyéticas , Enfermedades Renales/prevención & control , Riñón/patología , Fosfatasa Alcalina/sangre , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Biomarcadores/sangre , Biomarcadores/orina , Diferenciación Celular , Células Cultivadas , Enfermedad Crónica , Creatinina/sangre , Cisteína/metabolismo , Cistinosis/complicaciones , Cistinosis/genética , Cistinosis/metabolismo , Cistinosis/patología , Cistinosis/fisiopatología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfatos/sangre , Fosfatos/orina , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/prevención & control , Factores de Tiempo , Quimera por Trasplante , Urea/sangre
19.
Mol Vis ; 17: 2212-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21897743

RESUMEN

PURPOSE: The purpose of this study was to assess the ability of quantitative in vivo confocal microscopy to characterize the natural history and detect changes in crystal volume in corneas from a novel animal model of cystinosis, the cystinosin (Ctns(-/-)) mouse. METHODS: Two Ctns(-/-) mice and one C57Bl/6 mouse were examined at each of the following time points: 2, 3, 5, 7, 10, 12, and 14 months of age. In vivo confocal microscopy scans were performed in 4 different regions of the cornea per eye. After, animals were sacrificed and cornea blocks evaluated for cell morphology using phalloidin and lymphocytic infiltration using CD45 antibodies by ex vivo confocal microscopy. Cystine crystal content in the cornea was measured by calculating the pixel intensity of the crystals divided by the stromal volume using Metamorph Image Processing Software. RESULTS: Corneal crystals were identified in Ctns(-/-) eyes beginning at 3 months of age and increased in density until 7-12 months, at which time animals begin to succumb to the disease and corneas become scarred and neovascularized. Older Ctns(-/-) mice (7 months and older) showed the presence of cell infiltrates that stained positively for CD45 associated with progressive keratocyte disruption. Finally, at 12 months of age, decreased cell density and endothelial distortion were detected. CONCLUSIONS: Confocal microscopy identified corneal crystals starting at 3 month old Ctns(-/-) eyes. Cystine crystals induce inflammatory and immune response with aging associated with loss of keratocyte and endothelial cells. These findings suggest that the Ctns(-/-) mouse can be used as a model for developing and evaluating potential alternative therapies for corneal cystinosis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Cicatriz/patología , Córnea/patología , Cistina/metabolismo , Cistinosis/patología , Microscopía Confocal/métodos , Neovascularización Patológica/metabolismo , Factores de Edad , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Cicatriz/metabolismo , Córnea/irrigación sanguínea , Córnea/metabolismo , Cristalización , Cistinosis/genética , Cistinosis/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Queratinocitos/metabolismo , Queratinocitos/patología , Antígenos Comunes de Leucocito/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Faloidina
20.
Blood ; 114(12): 2542-52, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19506297

RESUMEN

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in every organ in the body and leads to organ damage and dysfunction, including renal defects. Using the murine model for cystinosis, Ctns(-/-) mice, we performed syngeneic bone marrow cell (BMC), hematopoietic stem cell (HSC), and mesenchymal stem cell transplantation. Organ-specific cystine content was reduced by 57% to 94% in all organs tested in the BMC-treated mice. Confocal microscopy and quantitative polymerase chain reaction revealed a large quantity of transplanted BMC in all organs tested, from 5% to 19% of the total cells. Most of these cells were not from the lymphoid lineage but part of the intrinsic structure of the organ. The natural progression of renal dysfunction was prevented, and deposition of corneal cystine crystals was significantly improved in the BMC-treated mice. HSC had the same therapeutic effect as whole BMC. In contrast, mesenchymal stem cell did not integrate efficiently in any organ. This work is a proof of concept for using HSC transplantation as a therapy for cystinosis and highlights the efficiency of this strategy for a chronic, progressive degenerative disease.


Asunto(s)
Trasplante de Médula Ósea , Cistinosis/cirugía , Modelos Animales de Enfermedad , Animales , Western Blotting , Cistinosis/sangre , Cistinosis/orina , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Trasplante de Células Madre Hematopoyéticas , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA