Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
2.
Am J Hum Genet ; 108(9): 1611-1630, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34343493

RESUMEN

Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Células Escamosas/genética , Cromosomas Humanos Par 7 , Sitios Genéticos , Melanocitos/metabolismo , Melanoma/genética , Receptores de Hidrocarburo de Aril/genética , Neoplasias Cutáneas/genética , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/patología , Melanocitos/efectos de la radiación , Melanoma/metabolismo , Melanoma/patología , Dibenzodioxinas Policloradas/toxicidad , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Baño de Sol , Rayos Ultravioleta/efectos adversos
3.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33713608

RESUMEN

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Asunto(s)
Población Negra/genética , Estatura/genética , Estudio de Asociación del Genoma Completo , África/etnología , Negro o Afroamericano/genética , Europa (Continente)/etnología , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
4.
PLoS Genet ; 16(10): e1008718, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045005

RESUMEN

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Monosacáridos/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Adolescente , Adulto , Presión Sanguínea , Índice de Masa Corporal , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/patología , Niño , Preescolar , Diabetes Mellitus Tipo 2/patología , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Menarquia/genética , Análisis de la Aleatorización Mendeliana , Relación Cintura-Cadera
5.
Am J Hum Genet ; 105(1): 89-107, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204013

RESUMEN

Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.


Asunto(s)
Cromatina/genética , Mapeo Cromosómico/métodos , Epigénesis Genética , Hígado/patología , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Niño , Cromatina/metabolismo , Femenino , Estudios de Asociación Genética , Células Hep G2 , Histonas/genética , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Regiones Promotoras Genéticas , Estudios Prospectivos , Secuencias Reguladoras de Ácidos Nucleicos , Adulto Joven
6.
J Immunol ; 204(5): 1334-1344, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953354

RESUMEN

The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.


Asunto(s)
Proteína p300 Asociada a E1A/inmunología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1alfa/inmunología , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Monocitos/inmunología , Proteínas de Unión al ARN/inmunología , Transcripción Genética , Línea Celular , Proteína p300 Asociada a E1A/genética , Humanos , Proteína Antagonista del Receptor de Interleucina 1/genética , Interleucina-1alfa/genética , Interleucina-1beta/genética , Proteínas de Unión al ARN/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología
7.
Alzheimers Dement ; 18(10): 1930-1942, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34978147

RESUMEN

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Población Negra/genética , Genotipo , Haplotipos , Polimorfismo de Nucleótido Simple/genética
8.
Hum Mol Genet ; 28(19): 3327-3338, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504550

RESUMEN

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2-18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.


Asunto(s)
Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Obesidad Infantil/genética , Polimorfismo de Nucleótido Simple , Tumor de Wilms/genética , Teorema de Bayes , Estudios de Casos y Controles , Niño , Femenino , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino
9.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304378

RESUMEN

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Adolescente , Factores de Edad , Animales , Niño , Preescolar , Sitios Genéticos , Humanos , Lactante , Recién Nacido , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Análisis de Regresión
10.
Stem Cells ; 38(10): 1332-1347, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32535942

RESUMEN

Osteoblast differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) can be induced by stimulation with canonical Notch ligand, Jagged1, or bone morphogenetic proteins (BMPs). However, it remains elusive how these two pathways lead to the same phenotypic outcome. Since Runx2 is regarded as a master regulator of osteoblastic differentiation, we targeted Runx2 with siRNA in hMSC. This abrogated both Jagged1 and BMP2 mediated osteoblastic differentiation, confirming the fundamental role for Runx2. However, while BMP stimulation increased Runx2 and downstream Osterix protein expression, Jagged1 treatment failed to upregulate either, suggesting that canonical Notch signals require basal Runx2 expression. To fully understand the transcriptomic profile of differentiating osteoblasts, RNA sequencing was performed in cells stimulated with BMP2 or Jagged1. There was common upregulation of ALPL and extracellular matrix genes, such as ACAN, HAS3, MCAM, and OLFML2B. Intriguingly, genes encoding components of Notch signaling (JAG1, HEY2, and HES4) were among the top 10 genes upregulated by both stimuli. Indeed, ALPL expression occurred concurrently with Notch activation and inhibiting Notch activity for up to 24 hours after BMP administration with DAPT (a gamma secretase inhibitor) completely abrogated hMSC osteoblastogenesis. Concordantly, RBPJ (recombination signal binding protein for immunoglobulin kappa J region, a critical downstream modulator of Notch signals) binding could be demonstrated within the ALPL and SP7 promoters. As such, siRNA-mediated ablation of RBPJ decreased BMP-mediated osteoblastogenesis. Finally, systemic Notch inhibition using diabenzazepine (DBZ) reduced BMP2-induced calvarial bone healing in mice supporting the critical regulatory role of Notch signaling in BMP-induced osteoblastogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Osteoblastos/citología , Osteoblastos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Adulto , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Dibenzazepinas/farmacología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína Jagged-1/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Cráneo/patología , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Adulto Joven
11.
Pediatr Res ; 89(3): 653-659, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32386398

RESUMEN

BACKGROUND: Despite improved health, shorter stature is common in cystic fibrosis (CF). We aimed to describe height velocity (HV) and contribution of height-related genetic variants to height (HT) in CF. METHODS: HV cohort: standard deviation scores (-Z) for HT, mid-parental height-adjusted HT (MPAH), and HV were generated using our Pediatric Center's CF Foundation registry data. HV-Z was compared with population means at each age (5-17 y), the relationship of HV-Z with HT-Z assessed, and HT-Z compared with MPAH-Z. GRS cohort: HT genetic risk-Z (HT-GRS-Z) were determined for pancreatic exocrine sufficient (PS) and insufficient (PI) youth and adults from our CF center and their relationships with HT-Z assessed. RESULTS: HV cohort: average HV-Z was normal across ages in our cohort but was 1.5× lower (p < 0.01) for each SD decrease in HT-Z. MPAH-Z was lower than HT-Z (p < 0.001). GRS cohort: HT-GRS-Z more strongly correlated with HT-Z and better explained height variance in PS (rho = 0.42; R2= 0.25) vs. PI (rho = 0.27; R2 = 0.11). CONCLUSIONS: Despite shorter stature compared with peers and mid-parental height, youth with CF generally have normal linear growth in mid- and late childhood. PI tempered the heritability of height. These results suggest that, in CF, final height is determined early in life in CF and genetic potential is attenuated by other factors. IMPACT: Children with CF remain shorter than their healthy peers despite advances in care. Our study demonstrates that children with CF have persistent shorter stature from an early age and fail to reach their genetic potential despite height velocities comparable to those of average maturing healthy peers and similar enrichment in known height increasing single-nucleotide polymorphisms (SNPs). Genetic risk scores better explained variability in pancreatic sufficient than in pancreatic insufficient individuals, suggesting that other modifying factors are in play for pancreatic insufficient individuals with CF. Given the CF Foundation's recommendation to target not only normal body mass index, but normal height percentiles as well, this study adds valuable insight to this discussion.


Asunto(s)
Estatura , Fibrosis Quística/fisiopatología , Insuficiencia Pancreática Exocrina/genética , Adolescente , Niño , Preescolar , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Registros Electrónicos de Salud , Femenino , Genotipo , Humanos , Masculino , Pediatría , Pubertad , Sistema de Registros , Riesgo
12.
Am J Hum Genet ; 101(5): 643-663, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056226

RESUMEN

Neurodegenerative diseases pose an extraordinary threat to the world's aging population, yet no disease-modifying therapies are available. Although genome-wide association studies (GWASs) have identified hundreds of risk loci for neurodegeneration, the mechanisms by which these loci influence disease risk are largely unknown. Here, we investigated the association between common genetic variants at the 7p21 locus and risk of the neurodegenerative disease frontotemporal lobar degeneration. We showed that variants associated with disease risk correlate with increased expression of the 7p21 gene TMEM106B and no other genes; co-localization analyses implicated a common causal variant underlying both association with disease and association with TMEM106B expression in lymphoblastoid cell lines and human brain. Furthermore, increases in the amount of TMEM106B resulted in increases in abnormal lysosomal phenotypes and cell toxicity in both immortalized cell lines and neurons. We then combined fine-mapping, bioinformatics, and bench-based approaches to functionally characterize all candidate causal variants at this locus. This approach identified a noncoding variant, rs1990620, that differentially recruits CTCF in lymphoblastoid cell lines and human brain to influence CTCF-mediated long-range chromatin-looping interactions between multiple cis-regulatory elements, including the TMEM106B promoter. Our findings thus provide an in-depth analysis of the 7p21 locus linked by GWASs to frontotemporal lobar degeneration, nominating a causal variant and causal mechanism for allele-specific expression and disease association at this locus. Finally, we show that genetic variants associated with risk of neurodegenerative diseases beyond frontotemporal lobar degeneration are enriched in CTCF-binding sites found in brain-relevant tissues, implicating CTCF-mediated gene regulation in risk of neurodegeneration more generally.


Asunto(s)
Demencia/genética , Regulación de la Expresión Génica/genética , Expresión Génica/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Encéfalo/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Cromatina , Degeneración Lobar Frontotemporal/genética , Estudio de Asociación del Genoma Completo , Genotipo , Células HeLa , Humanos , Neuronas/patología , Fenotipo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Riesgo
13.
PLoS Genet ; 13(4): e1006719, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28430825

RESUMEN

Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.


Asunto(s)
Adiposidad/genética , Obesidad/genética , Serina Endopeptidasas/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Antropometría , Población Negra/genética , Índice de Masa Corporal , Mapeo Cromosómico , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Obesidad/patología , Polimorfismo de Nucleótido Simple , Relación Cintura-Cadera , Población Blanca/genética
14.
Hum Mol Genet ; 25(2): 389-403, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604143

RESUMEN

A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Niño , Preescolar , Femenino , Sitios Genéticos , Humanos , Masculino , Riesgo , Población Blanca/genética , Adulto Joven
15.
Hum Genet ; 137(5): 413-425, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29797095

RESUMEN

Although Genome Wide Association Studies (GWAS) have led to many valuable insights into the genetic bases of common diseases over the past decade, the issue of missing heritability has surfaced, as the discovered main effect genetic variants found to date do not account for much of a trait's predicted genetic component. We present a workflow, integrating epigenomics and topologically associating domain data, aimed at discovering trait-associated SNP pairs from GWAS where neither SNP achieved independent genome-wide significance. Each analyzed SNP pair consists of one SNP in a putative active enhancer and another SNP in a putative physically interacting gene promoter in a trait-relevant tissue. As a proof-of-principle case study, we used this approach to identify focused collections of SNP pairs that we analyzed in three independent Type 2 diabetes (T2D) GWAS. This approach led us to discover 35 significant SNP pairs, encompassing both novel signals and signals for which we have found orthogonal support from other sources. Nine of these pairs are consistent with eQTL results, two are consistent with our own capture C experiments, and seven involve signals supported by recent T2D literature.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epigenómica , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Sitios de Carácter Cuantitativo/genética , Diabetes Mellitus Tipo 2/fisiopatología , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
16.
Hum Mol Genet ; 24(17): 5053-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26041818

RESUMEN

Childhood fractures are common, with the forearm being the most common site. Genome-wide association studies (GWAS) have identified more than 60 loci associated with bone mineral density (BMD) in adults but less is known about genetic influences specific to bone in childhood. To identify novel genetic factors that influence pediatric bone strength at a common site for childhood fractures, we performed a sex-stratified trans-ethnic genome-wide association study of areal BMD (aBMD) and bone mineral content (BMC) Z-scores measured by dual energy X-ray absorptiometry at the one-third distal radius, in a cohort of 1399 children without clinical abnormalities in bone health. We tested signals with P < 5 × 10(-6) for replication in an independent, same-age cohort of 486 Caucasian children. Two loci yielded a genome-wide significant combined P-value: rs7797976 within CPED1 in females [P = 2.4 × 10(-11), ß =- 0.30 standard deviations (SD) per T allele; aBMD-Z] and rs7035284 at 9p21.3 in males (P = 1.2 × 10(-8), ß = 0.28 SD per G allele; BMC-Z). Signals at the CPED1-WNT16-FAM3C locus have been previously associated with BMD at other skeletal sites in adults and children. Our result at the distal radius underscores the importance of this locus at multiple skeletal sites. The 9p21.3 locus is within a gene desert, with the nearest gene flanking each side being MIR31HG and MTAP, neither of which has been implicated in BMD or BMC previously. These findings suggest that genetic determinants of childhood bone accretion at the radius, a skeletal site that is primarily cortical bone, exist and also differ by sex.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Radio (Anatomía) , Adolescente , Enfermedades Óseas Metabólicas/genética , Niño , Preescolar , Femenino , Genotipo , Humanos , Estudios Longitudinales , Masculino , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Factores Sexuales
17.
BMC Med ; 15(1): 88, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28438156

RESUMEN

BACKGROUND: In adulthood, autoimmune diabetes can present as non-insulin-requiring diabetes, termed as 'latent autoimmune diabetes in adults' (LADA). In this study, we investigated established type 1 diabetes (T1D) and type 2 diabetes (T2D) genetic loci in a large cohort of LADA cases to assess where LADA is situated relative to these two well-characterized, classic forms of diabetes. METHODS: We tested the association of T1D and T2D GWAS-implicated loci in 978 LADA cases and 1057 non-diabetic controls of European ancestry using a linear mixed model. We then compared the associations of T1D and T2D loci between LADA and T1D and T2D cases, respectively. We quantified the difference in genetic risk between each given disease at each locus, and also calculated genetic risk scores to quantify how genetic liability to T1D and T2D distinguished LADA cases from controls. RESULTS: Overall, our results showed that LADA is genetically more similar to T1D, with the exception of an association at the T2D HNF1A locus. Several T1D loci were associated with LADA, including the major histocompatibility complex region, as well as at PTPN22, SH2B3, and INS. Contrary to previous studies, the key T2D risk allele at TCF7L2 (rs7903146-T) had a significantly lower frequency in LADA cases, suggesting that this locus does not play a role in LADA etiology. When constrained on antibody status, the similarity between LADA and T1D became more apparent; however, the HNF1A and TCF7L2 observations persisted. CONCLUSION: LADA is genetically closer to T1D than T2D, although the genetic load of T1D risk alleles is less than childhood-onset T1D, particularly at the major histocompatibility complex region, potentially accounting for the later disease onset. Our results show that the genetic spectrum of T1D extends into adult-onset diabetes, where it can clinically masquerade as T2D. Furthermore, T2D genetic risk plays a small role in LADA, with a degree of evidence for the HNF1A locus, highlighting the potential for genetic risk scores to contribute towards defining diabetes subtypes.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Adulto , Anciano , Alelos , Humanos , Persona de Mediana Edad , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
18.
Diabetologia ; 59(11): 2360-2368, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27539148

RESUMEN

AIMS/HYPOTHESIS: One of the most strongly associated type 2 diabetes loci reported to date resides within the TCF7L2 gene. Previous studies point to the T allele of rs7903146 in intron 3 as the causal variant at this locus. We aimed to identify the actual gene(s) under the influence of this variant. METHODS: Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease, we generated a 1.4 kb deletion of the genomic region harbouring rs7903146 in the HCT116 cell line, followed by global gene expression analysis. We then carried out a combination of circularised chromosome conformation capture (4C) and Capture C in cell lines, HCT116 and NCM460 in order to ascertain which promoters of these perturbed genes made consistent physical contact with this genomic region. RESULTS: We observed 99 genes with significant differential expression (false discovery rate [FDR] cut-off:10%) and an effect size of at least twofold. The subsequent promoter contact analyses revealed just one gene, ACSL5, which resides in the same topologically associating domain as TCF7L2. The generation of additional, smaller deletions (66 bp and 104 bp) comprising rs7903146 showed consistently reduced ACSL5 mRNA levels across all three deletions of up to 30-fold, with commensurate loss of acyl-CoA synthetase long-chain family member 5 (ACSL5) protein. Notably, the deletion of this single-nucleotide polymorphism region abolished significantly detectable chromatin contacts with the ACSL5 promoter. We went on to confirm that contacts between rs7903146 and the ACSL5 promoter regions were conserved in human colon tissue. ACSL5 encodes ACSL5, an enzyme with known roles in fatty acid metabolism. CONCLUSIONS/INTERPRETATION: This 'variant to gene mapping' effort implicates the genomic location harbouring rs7903146 as a regulatory region for ACSL5.


Asunto(s)
Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Western Blotting , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Colon/metabolismo , Células HCT116 , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Mol Biol Evol ; 32(11): 2961-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26226985

RESUMEN

Bone mineral density (BMD) is a highly heritable trait used both for the diagnosis of osteoporosis in adults and to assess bone health in children. Ethnic differences in BMD have been documented, with markedly higher levels in individuals of African descent, which partially explain disparity in osteoporosis risk across populations. To date, 63 independent genetic variants have been associated with BMD in adults of Northern-European ancestry. Here, we demonstrate that at least 61 of these variants are predictive of BMD early in life by studying their compound effect within two multiethnic pediatric cohorts. Furthermore, we show that within these cohorts and across populations worldwide the frequency of those alleles associated with increased BMD is systematically elevated in individuals of Sub-Saharan African ancestry. The amount of differentiation in the BMD genetic scores among Sub-Saharan and non-Sub-Saharan populations together with neutrality tests, suggest that these allelic differences are compatible with the hypothesis of selective pressures acting on the genetic determinants of BMD. These findings constitute an explorative contribution to the role of selection on ethnic BMD differences and likely a new example of polygenic adaptation acting on a human trait.


Asunto(s)
Densidad Ósea/genética , Grupos Raciales/genética , Adulto , Alelos , Pueblo Asiatico/genética , Evolución Biológica , Población Negra/genética , Niño , Evolución Molecular , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Selección Genética , Población Blanca/genética
20.
J Med Genet ; 51(6): 419-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24706941

RESUMEN

BACKGROUND: The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. METHODS: The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. RESULTS: Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9-100%), and the mean specificity was 98.0% (87.5-100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. CONCLUSIONS: Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.


Asunto(s)
Servicios de Laboratorio Clínico/normas , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72 , Femenino , Demencia Frontotemporal/genética , Humanos , Masculino , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA