Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 65(6): 1014-1028.e7, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262504

RESUMEN

Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Células Endoteliales/metabolismo , Activación del Canal Iónico , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células COS , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Muerte Celular , Hipoxia de la Célula , Chlorocebus aethiops , Cisteína , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Metabolismo Energético , Glutatión/metabolismo , Células HEK293 , Células HeLa , Humanos , Activación del Canal Iónico/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/patología , Mutación , Oxidación-Reducción , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Trombina/farmacología , Factores de Tiempo , Transfección
2.
Cardiovasc Drugs Ther ; 37(2): 245-256, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997361

RESUMEN

PURPOSE: ß-Adrenergic receptors (ßAR) are essential targets for the treatment of heart failure (HF); however, chronic use of ßAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of ß2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a ß-arrestin (ßarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS: We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of ßarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS: Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION: Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of ß2AR to promote Gi protein/ßarr-dependent activation of RhoA/ROCK/PKD signaling.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratones , Animales , Transducción de Señal , Proteína Quinasa C/metabolismo , Proteína Quinasa C/farmacología , Insuficiencia Cardíaca/metabolismo , Contracción Miocárdica
3.
Ann Plast Surg ; 87(6): 694-698, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33883434

RESUMEN

ABSTRACT: In patients with breast hypertrophy, excessive breast weight applies pressure on the thorax, which may disrupt the normal breathing. The purpose of this study is to evaluate the impact of the breast hypertrophy and reduction mammoplasty on respiratory function. A comprehensive search of 3 databases, PubMed, Ovid, and Scopus databases, was performed. "Mammoplasty" and "respiration or pulmonary function tests" were the keywords used to search for relevant articles. Ten studies involving 280 patients with breast hypertrophy were included in the final review. Seven articles demonstrated an increase in at least 1 pulmonary function test value after the surgery. This systematic review revealed that, preoperatively, pulmonary function test values of the patients are usually in the normal range. Nonetheless, reduction mammoplasty still improves lung function parameters. Additionally, patients with respiratory complaints felt improvement in their symptoms after the surgery. However, future studies are needed, as heterogeneity among studies was observed.


Asunto(s)
Mamoplastia , Mama/cirugía , Humanos , Hipertrofia/cirugía , Pulmón , Pruebas de Función Respiratoria
4.
J Card Fail ; 26(12): 1075-1085, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956817

RESUMEN

BACKGROUND: We reported 3 novel nonsynonymous single nucleotide variants of Bcl2-associated athanogene 3 (BAG3) in African Americans with heart failure (HF) that are associated with a 2-fold increase in cardiac events (HF hospitalization, heart transplantation, or death). METHODS AND RESULTS: We expressed BAG3 variants (P63A, P380S, and A479V) via adenovirus-mediated gene transfer in adult left ventricular myocytes isolated from either wild-type (WT) or cardiac-specific BAG3 haploinsufficient (cBAG3+/-) mice: the latter to simulate the clinical situation in which BAG3 variants are only found on 1 allele. Compared with WT myocytes, cBAG3+/- myocytes expressed approximately 50% of endogenous BAG3 levels and exhibited decreased [Ca2+]i and contraction amplitudes after isoproterenol owing to decreased L-type Ca2+ current. BAG3 repletion with WT BAG3 but not P380S, A479V, or P63A/P380S variants restored contraction amplitudes in cBAG3+/- myocytes to those measured in WT myocytes, suggesting excitation-contraction abnormalities partly account for HF in patients harboring these mutants. Because P63A is near the WW domain (residues 21-55) and A479V is in the BAG domain (residues 420-499), we expressed BAG3 deletion mutants (Δ1-61 and Δ421-575) in WT myocytes and demonstrated that the BAG but not the WW domain was involved in enhancement of excitation-contraction by isoproterenol. CONCLUSIONS: The BAG3 variants contribute to HF in African American patients partly by decreasing myocyte excitation-contraction under stress, and that both the BAG and PXXP domains are involved in mediating ß-adrenergic responsiveness in myocytes.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adrenérgicos , Negro o Afroamericano/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/genética , Insuficiencia Cardíaca/genética , Humanos , Isoproterenol/farmacología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
5.
J Cell Physiol ; 234(9): 15048-15060, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30637731

RESUMEN

The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect against oxidative stress-induced cardiac injury remain unclear. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes with H2 O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-mediated Ca2+ increase with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) resulted in significantly reduced pPyk2 in WT but not in KO myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown to augment mitochondrial Ca2+ uptake and enhance adenosine triphosphate generation. Although Trpm2-mediated Ca2+ influx phosphorylated Ca2+ -calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 did not significantly affect Pyk2 phosphorylation in H2 O2 -treated WT myocytes. After ischemia/reperfusion (I/R), Pyk2 phosphorylation and its downstream prosurvival signaling molecules (pERK1/2 and pAkt) were significantly lower in KO-I/R when compared with WT-I/R hearts. After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated prosurvival signaling molecules and prevented excessive increases in reactive oxygen species, thereby affording protection from I/R injury.

6.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30256393

RESUMEN

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Asunto(s)
Cardiomiopatías/metabolismo , Metabolismo Energético , Infecciones por VIH/complicaciones , VIH-1/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Cardiomiopatías/virología , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Infecciones por VIH/virología , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/virología , Contracción Miocárdica , Miocitos Cardíacos/virología , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Función Ventricular Izquierda
7.
Proc Natl Acad Sci U S A ; 113(28): E4107-16, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354517

RESUMEN

ß-adrenergic receptors (ßARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent ß1AR and Gi-dependent ß2AR pathways leads to enhanced cardiomyocyte death, reduced ß1AR expression, and decreased inotropic reserve. ß-blockers act to block excessive catecholamine stimulation of ßARs to decrease cellular apoptotic signaling and normalize ß1AR expression and inotropy. Whereas these actions reduce cardiac remodeling and mortality outcomes, the effects are not sustained. Converse to G-protein-dependent signaling, ß-arrestin-dependent signaling promotes cardiomyocyte survival. Given that ß2AR expression is unaltered in CHF, a ß-arrestin-biased agonist that operates through the ß2AR represents a potentially useful therapeutic approach. Carvedilol, a currently prescribed nonselective ß-blocker, has been classified as a ß-arrestin-biased agonist that can inhibit basal signaling from ßARs and also stimulate cell survival signaling pathways. To understand the relative contribution of ß-arrestin bias to the efficacy of select ß-blockers, a specific ß-arrestin-biased pepducin for the ß2AR, intracellular loop (ICL)1-9, was used to decouple ß-arrestin-biased signaling from occupation of the orthosteric ligand-binding pocket. With similar efficacy to carvedilol, ICL1-9 was able to promote ß2AR phosphorylation, ß-arrestin recruitment, ß2AR internalization, and ß-arrestin-biased signaling. Interestingly, ICL1-9 was also able to induce ß2AR- and ß-arrestin-dependent and Ca(2+)-independent contractility in primary adult murine cardiomyocytes, whereas carvedilol had no efficacy. Thus, ICL1-9 is an effective tool to access a pharmacological profile stimulating cardioprotective signaling and inotropic effects through the ß2AR and serves as a model for the next generation of cardiovascular drug development.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Lipopéptidos/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Propanolaminas/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Carbazoles/uso terapéutico , Carvedilol , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Lipopéptidos/uso terapéutico , Ratones , Cultivo Primario de Células , Propanolaminas/uso terapéutico , Conformación Proteica/efectos de los fármacos , beta-Arrestinas/agonistas
8.
Am J Physiol Cell Physiol ; 315(4): C571-C586, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020827

RESUMEN

Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential function in cell survival and is highly expressed in many cancers. Inhibition of TRPM2 in neuroblastoma by depletion with CRISPR technology or expression of dominant negative TRPM2-S has been shown to significantly reduce cell viability. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in TRPM2 modulation of neuroblastoma viability was explored. In TRPM2-depleted cells, phosphorylation and expression of Pyk2 and cAMP-responsive element-binding protein (CREB), a downstream target, were significantly reduced after application of the chemotherapeutic agent doxorubicin. Overexpression of wild-type Pyk2 rescued cell viability. Reduction of Pyk2 expression with shRNA decreased cell viability and CREB phosphorylation and expression, demonstrating Pyk2 modulates CREB activation. TRPM2 depletion impaired phosphorylation of Src, an activator of Pyk2, and this may be a mechanism to reduce Pyk2 phosphorylation. TRPM2 inhibition was previously demonstrated to decrease mitochondrial function. Here, CREB, Pyk2, and phosphorylated Src were reduced in mitochondria of TRPM2-depleted cells, consistent with their role in modulating expression and activation of mitochondrial proteins. Phosphorylated Src and phosphorylated and total CREB were reduced in TRPM2-depleted nuclei. Expression and function of mitochondrial calcium uniporter (MCU), a target of phosphorylated Pyk2 and CREB, were significantly reduced. Wild-type TRPM2 but not Ca2+-impermeable mutant E960D reconstituted phosphorylation and expression of Pyk2 and CREB in TRPM2-depleted cells exposed to doxorubicin. Results demonstrate that TRPM2 expression protects the viability of neuroblastoma through Src, Pyk2, CREB, and MCU activation, which play key roles in maintaining mitochondrial function and cellular bioenergetics.


Asunto(s)
Canales de Calcio/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Quinasa 2 de Adhesión Focal/genética , Neuroblastoma/tratamiento farmacológico , Canales Catiónicos TRPM/genética , Señalización del Calcio/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/genética , Neuroblastoma/genética , Neuroblastoma/patología , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Familia-src Quinasas/genética
9.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28493473

RESUMEN

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Asunto(s)
Metabolismo Energético , VIH-1/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Autofagia , Calcio/metabolismo , Canales de Calcio/metabolismo , Hipoxia de la Célula , Células Cultivadas , Interacciones Huésped-Patógeno , Potenciales de la Membrana , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Cardíacas/virología , Mitofagia , Miocitos Cardíacos/virología , Fosforilación Oxidativa , Cultivo Primario de Células , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Factores de Tiempo
10.
J Cell Physiol ; 233(9): 6319-6326, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29323723

RESUMEN

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Adrenérgicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Fenotipo
11.
Mol Pharmacol ; 92(6): 707-717, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29070696

RESUMEN

G protein-coupled receptor kinases (GRKs) phosphorylate activated receptors to promote arrestin binding, decoupling from heterotrimeric G proteins, and internalization. GRK2 and GRK5 are overexpressed in the failing heart and thus have become therapeutic targets. Previously, we discovered two classes of GRK2-selective inhibitors, one stemming from GSK180736A, a Rho-associated coiled-coil containing kinase 1 (ROCK1) inhibitor, the other from paroxetine, a selective serotonin-reuptake inhibitor. These two classes of compounds bind to the GRK2 active site in a similar configuration but contain different hinge-binding "warheads": indazole and benzodioxole, respectively. We surmised from our prior studies that an indazole would be the stronger hinge binder and would impart increased potency when substituted for benzodioxole in paroxetine derivatives. To test this hypothesis, we synthesized a series of hybrid compounds that allowed us to compare the effects of inhibitors that differ only in the identity of the warhead. The indazole-paroxetine analogs were indeed more potent than their respective benzodioxole derivatives but lost selectivity. To investigate how these two warheads dictate selectivity, we determined the crystal structures of three of the indazole hybrid compounds (CCG224061, CCG257284, and CCG258748) in complex with GRK2-Gßγ Comparison of these structures with those of analogous benzodioxole-containing complexes confirmed that the indazole-paroxetine hybrids form stronger interactions with the hinge of the kinase but also stabilize a distinct conformation of the kinase domain of GRK2 compared with previous complexes with paroxetine analogs. This conformation is analogous to one that can be assumed by GRK5, at least partially explaining the loss in selectivity.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Quinasa 5 del Receptor Acoplado a Proteína-G/farmacología , Indazoles/farmacología , Paroxetina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Quinasa 2 del Receptor Acoplado a Proteína-G/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Inhibidores Selectivos de la Recaptación de Serotonina , Quinasas Asociadas a rho/metabolismo
12.
J Biol Chem ; 291(47): 24449-24464, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27694440

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) ion channel has an essential function in modulating cell survival following oxidant injury and is highly expressed in many cancers including neuroblastoma. Here, in xenografts generated from neuroblastoma cells in which TRPM2 was depleted with CRISPR/Cas9 technology and in in vitro experiments, tumor growth was significantly inhibited and doxorubicin sensitivity increased. The hypoxia-inducible transcription factor 1/2α (HIF-1/2α) signaling cascade including proteins involved in oxidant stress, glycolysis, and mitochondrial function was suppressed by TRPM2 depletion. TRPM2-depleted SH-SY5Y neuroblastoma cells demonstrated reduced oxygen consumption and ATP production after doxorubicin, confirming impaired cellular bioenergetics. In cells in which TRPM2 was depleted, mitochondrial superoxide production was significantly increased, particularly following doxorubicin. Ectopic expression of superoxide dismutase 2 (SOD2) reduced ROS and preserved viability of TRPM2-depleted cells, however, failed to restore ATP levels. Mitochondrial reactive oxygen species (ROS) were also significantly increased in cells in which TRPM2 function was inhibited by TRPM2-S, and pretreatment of these cells with the antioxidant MitoTEMPO significantly reduced ROS levels in response to doxorubicin and protected cell viability. Expression of the TRPM2 pore mutant E960D, in which calcium entry through TRPM2 is abolished, also resulted in significantly increased mitochondrial ROS following doxorubicin treatment, showing the critical role of TRPM2-mediated calcium entry. These findings demonstrate the important function of TRPM2 in modulation of cell survival through mitochondrial ROS, and the potential of targeted inhibition of TRPM2 as a therapeutic approach to reduce cellular bioenergetics, tumor growth, and enhance susceptibility to chemotherapeutic agents.


Asunto(s)
Señalización del Calcio , Glucólisis , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Sustitución de Aminoácidos , Calcio , Línea Celular Tumoral , Supervivencia Celular , Eliminación de Gen , Humanos , Mitocondrias/genética , Mitocondrias/patología , Mutación Missense , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Canales Catiónicos TRPM/genética
13.
J Cell Physiol ; 232(4): 797-805, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27381181

RESUMEN

Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas/metabolismo
14.
Trans Am Clin Climatol Assoc ; 128: 308-329, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28790515

RESUMEN

Transient receptor potential melastatin 2 (Trpm2) channels are nonvoltage-activated channels permeable to monovalent and divalent cations, and are expressed in heart, brain, kidney, vasculature, and hematopoietic cells. Trpm2 is overexpressed in bladder, lung, breast, liver, head, and neck cancers. Classically, Trpm2 activation induces cell injury and death by Ca2+ overload or enhanced inflammatory response. Recent studies show that Trpm2 protects lungs from endotoxin-induced injury by reducing reactive oxygen species production in phagocytes; and improves cardiac function after ischemia-reperfusion injury by preserving mitochondrial respiration and cellular adenosine triphosphate levels while decreasing reactive oxygen species levels. In neuroblastoma xenografts, Trpm2 overexpression promotes tumor growth through modulation of hypoxia-inducible transcription factor expression and cellular bioenergetics; whereas Trpm2 inhibition results in enhanced sensitivity to doxorubicin. The robust expression in cancer cells and its pro-survival and proliferative properties make Trpm2 a rational target for cancer therapy. Indiscriminate Trpm2 inhibition, however, may engender serious untoward side effects in other vital organs.


Asunto(s)
Señalización del Calcio , Estrés Oxidativo , Daño por Reperfusión/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/genética
15.
J Mol Cell Cardiol ; 92: 10-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26796036

RESUMEN

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with ß1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the ß1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Homeostasis , Humanos , Isoproterenol/administración & dosificación , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , Sarcolema/metabolismo
16.
J Physiol ; 594(15): 4181-91, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26420388

RESUMEN

TRPM channels are a subgroup of the transient receptor potential (TRP) channel superfamily whose members have important roles in cell proliferation and survival. TRPM2, the second subfamily member to be cloned, is expressed in many tissues including brain, heart, vasculature and haematopoietic cells. TRPM2 is activated by oxidative stress and several other extracellular signals including tumour necrosis factor α (TNF-α) and amyloid ß-peptide, which increase production of ADP-ribose (ADPR). ADPR binds to the TRPM2 C-terminal NUDT9-H domain, activating the channel. Early studies support the paradigm that TRPM2 activation induces cell death by sustained Ca(2+) influx or by enhancing cytokine production, aggravating inflammation and tissue injury. However, more recent data show that for a number of physiological processes, TRPM2 is protective. TRPM2 protects lungs from endotoxin-induced injury by reducing reactive oxygen species (ROS) production by phagocytes. It protects hearts from oxidative damage after ischaemia-reperfusion or hypoxia-reoxygenation by maintaining better mitochondrial bioenergetics and by decreasing ROS. Sustained Ca(2+) entry through TRPM2 is required to maintain cellular bioenergetics and protect against hypoxia-reoxygenation injury. TRPM2 also protects neuroblastoma from moderate oxidative stress by decreasing ROS through increased levels of forkhead box transcription factor 3a (FOXO3a) and a downstream effector, superoxide dismutase 2. TRPM2 is important for tumour growth and cell survival through modulation of hypoxia-inducible transcription factor expression, mitochondrial function and mitophagy. These findings in cardiac ischaemia and in neuroblastoma suggest that TRPM2 has a basic role in sustaining mitochondrial function and in cell survival that applies to a number of physiological systems and pathophysiological processes including ischaemia-reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica/fisiopatología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/metabolismo , Supervivencia Celular , Humanos , Enfermedades Renales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neoplasias/metabolismo , Estrés Oxidativo , Canales Catiónicos TRPM/metabolismo
17.
J Biol Chem ; 290(34): 20649-20659, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26032411

RESUMEN

G protein-coupled receptor kinases (GRKs) regulate cell signaling by initiating the desensitization of active G protein-coupled receptors. The two most widely expressed GRKs (GRK2 and GRK5) play a role in cardiovascular disease and thus represent important targets for the development of novel therapeutic drugs. In the course of a GRK2 structure-based drug design campaign, one inhibitor (CCG215022) exhibited nanomolar IC50 values against both GRK2 and GRK5 and good selectivity against other closely related kinases such as GRK1 and PKA. Treatment of murine cardiomyocytes with CCG215022 resulted in significantly increased contractility at 20-fold lower concentrations than paroxetine, an inhibitor with more modest selectivity for GRK2. A 2.4 Å crystal structure of the GRK5·CCG215022 complex was determined and revealed that the inhibitor binds in the active site similarly to its parent compound GSK180736A. As designed, its 2-pyridylmethyl amide side chain occupies the hydrophobic subsite of the active site where it forms three additional hydrogen bonds, including one with the catalytic lysine. The overall conformation of the GRK5 kinase domain is similar to that of a previously determined structure of GRK6 in what is proposed to be its active state, but the C-terminal region of the enzyme adopts a distinct conformation. The kinetic properties of site-directed mutants in this region are consistent with the hypothesis that this novel C-terminal structure is representative of the membrane-bound conformation of the enzyme.


Asunto(s)
Fármacos Cardiovasculares/química , Inhibidores Enzimáticos/química , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Miocitos Cardíacos/efectos de los fármacos , Piridinas/química , Animales , Fármacos Cardiovasculares/síntesis química , Fármacos Cardiovasculares/farmacología , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/aislamiento & purificación , Expresión Génica , Tabiques Cardíacos/química , Tabiques Cardíacos/citología , Tabiques Cardíacos/efectos de los fármacos , Tabiques Cardíacos/enzimología , Ventrículos Cardíacos/química , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Paroxetina/química , Paroxetina/farmacología , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Piridinas/síntesis química , Piridinas/farmacología , Alineación de Secuencia
18.
J Cell Biochem ; 117(8): 1813-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26729625

RESUMEN

Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Choque Térmico/genética , Estabilidad Proteica , Ratas , Ratas Sprague-Dawley
19.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1030-44, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26962024

RESUMEN

We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 µM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 µM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 µM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Sulfuro de Hidrógeno/envenenamiento , Azul de Metileno/administración & dosificación , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Animales , Antídotos/administración & dosificación , Antioxidantes/administración & dosificación , Canales de Calcio Tipo L/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Activación del Canal Iónico/efectos de los fármacos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
20.
Clin Sci (Lond) ; 130(22): 2017-2027, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27589993

RESUMEN

Vasopressin type 1A receptor (V1AR) expression is elevated in chronic human heart failure (HF) and contributes to cardiac dysfunction in animal models, in part via reduced ß-adrenergic receptor (ßAR) responsiveness. Although cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease ßAR activity, it is unknown whether V1AR inhibition conversely augments ßAR responsiveness. Further, although V1AR has been shown to contribute to chronic progression of HF, its impact on cardiac function following acute ischaemic injury has not been reported. Using V1AR knockout (V1AR KO) mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischaemic injury, ßAR sensitivity and cardiomyocyte responsiveness to ßAR stimulation. Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischaemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ. Enhanced cardiac contractility in V1AR KO mice was associated with augmented ß-blocker sensitivity, suggesting increased basal ßAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban (PLB) and cardiac troponin I (cTnI) phosphorylation were elevated compared with control mice. At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to ßAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced ßAR-mediated contractility in control myocytes. Therefore, although V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischaemic injury, its effects on ßAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA