Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 2160-2166, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38211338

RESUMEN

We synthesized two isoreticular furan-based metal-organic frameworks (MOFs), MOF-LA2-1(furan) and MOF-LA2-2(furan) with rod-like secondary building units (SBUs) featuring 1D channels, as sorbents for atmospheric water harvesting (LA = long arm). These aluminum-based MOFs demonstrated a combination of high water uptake and stability, exhibiting working capacities of 0.41 and 0.48 gwater/gMOF (under isobaric conditions of 1.70 kPa), respectively. Remarkably, both MOFs showed a negligible loss in water uptake after 165 adsorption-desorption cycles. These working capacities rival that of MOF-LA2-1(pyrazole), which has a working capacity of 0.55 gwater/gMOF. The current MOFs stand out for their high water stability, as evidenced by 165 cycles of water uptake and release. MOF-LA2-2(furan) is the first aluminum MOF to employ a double 'long arm' extension strategy, which is confirmed through single-crystal X-ray diffraction (SCXRD). The MOFs were synthesized by using a straightforward synthesis route. This study offers valuable insights into the design of durable, water-stable MOFs and underscores their potential for efficient water harvesting.

2.
J Am Chem Soc ; 145(6): 3408-3418, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724435

RESUMEN

A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for ∼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be ∼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate ∼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.

3.
J Am Chem Soc ; 145(2): 1407-1422, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598430

RESUMEN

Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.


Asunto(s)
Compuestos Organometálicos , Adsorción , Dimerización , Cationes , Circonio/química , Alquenos , Agua/química
4.
J Am Chem Soc ; 145(51): 28284-28295, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38090755

RESUMEN

We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g-1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.

5.
J Am Chem Soc ; 143(48): 20274-20280, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817993

RESUMEN

Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.

6.
ACS Cent Sci ; 9(3): 551-557, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968524

RESUMEN

A linker extension strategy for generating metal-organic frameworks (MOFs) with superior moisture-capturing properties is presented. Applying this design approach involving experiment and computation results in MOF-LA2-1 {[Al(OH)(PZVDC)], where PZVDC2- is (E)-5-(2-carboxylatovinyl)-1H-pyrazole-3-carboxylate}, which exhibits an approximately 50% water capacity increase compared to the state-of-the-art water-harvesting material MOF-303. The power of this approach is the increase in pore volume while retaining the ability of the MOF to harvest water in arid environments under long-term uptake and release cycling, as well as affording a reduction in regeneration heat and temperature. Density functional theory calculations and Monte Carlo simulations give detailed insight pertaining to framework structure, water interactions within its pores, and the resulting water sorption isotherm.

7.
ACS Cent Sci ; 9(2): 266-276, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36844483

RESUMEN

We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.

8.
Science ; 374(6566): 454-459, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672755

RESUMEN

Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA