Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Commun ; : 100939, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725245

RESUMEN

Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.

2.
Front Immunol ; 13: 904244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655780

RESUMEN

Melanization in the hemolymph of arthropods is a conserved defense strategy against infection by invading pathogens. Numerous plant viruses are persistently transmitted by insect vectors, and must overcome hemolymph melanization. Here, we determine that the plant rhabdovirus rice stripe mosaic virus (RSMV) has evolved to evade the antiviral melanization response in the hemolymph in leafhopepr vectors. After virions enter vector hemolymph cells, viral nucleoprotein N is initially synthesized and directly interacts with prophenoloxidase (PPO), a core component of the melanization pathway and this process strongly activates the expression of PPO. Furthermore, such interaction could effectively inhibit the proteolytic cleavage of the zymogen PPO to active phenoloxidase (PO), finally suppressing hemolymph melanization. The knockdown of PPO expression or treatment with the PO inhibitor also suppresses hemolymph melanization and causes viral excessive accumulation, finally causing a high insect mortality rate. Consistent with this function, microinjection of N into leafhopper vectors attenuates melanization and promotes viral infection. These findings demonstrate that RSMV N serves as the effector to attenuate hemolymph melanization and facilitate viral persistent propagation in its insect vector. Our findings provide the insights in the understanding of ongoing arms race of insect immunity defense and viral counter-defense.


Asunto(s)
Hemípteros , Reoviridae , Rhabdoviridae , Animales , Hemolinfa/metabolismo , Insectos , Nucleoproteínas , Reoviridae/fisiología , Replicación Viral
3.
Microb Biotechnol ; 15(4): 1221-1234, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34469634

RESUMEN

Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas-vector interaction.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Citrus/microbiología , Hemípteros/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética
4.
Sci Rep ; 5: 17583, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616172

RESUMEN

Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Genes de Plantas , Familia de Multigenes , Plantas/genética , Plantas/metabolismo , Sacarosa/metabolismo , Biomasa , Elementos Transponibles de ADN , Evolución Molecular , Flores , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica/métodos , Germinación/genética , Fenotipo , Filogenia , Plantas/clasificación , Plantas Modificadas Genéticamente , Selección Genética , Estrés Fisiológico/genética
5.
DNA Res ; 18(1): 1-16, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21169340

RESUMEN

Glutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the major expansion mechanism and both monocot and dicot plants may have practiced different expansion and evolutionary history. Non-synonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that N- and C-terminal functional domains of GSTs (GST_N and GST_C) seem to have evolved under a strong purifying selection (Ka/Ks < 1) under different selective pressures. Differential evolutionary rates between GST_N and GST_C and high degree of expression divergence have been regarded as the major drivers for the retention of duplicated genes and the adaptability to various stresses. Expression profiling also indicated that the gene family plays a role not only in stress-related biological processes but also in the sugar-signalling pathway. Our survey provides additional annotation of the plant GST gene family and advance the understanding of plant GSTs in lineage-specific expansion and species diversification.


Asunto(s)
Glutatión Transferasa/genética , Sorghum/enzimología , Sorghum/genética , Metabolismo de los Hidratos de Carbono , Evolución Molecular , Duplicación de Gen , Genes de Plantas , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Plantas/enzimología , Plantas/genética , Plantas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Sorghum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA