Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Kidney Int ; 94(4): 716-727, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30041812

RESUMEN

PiT-2, a type III sodium-dependent phosphate transporter, is a causative gene for the brain arteriolar calcification in people with familial basal ganglion calcification. Here we examined the effect of PiT-2 haploinsufficiency on vascular calcification in uremic mice using wild-type and global PiT-2 heterozygous knockout mice. PiT-2 haploinsufficiency enhanced the development of vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. No differences were observed in the serum mineral biomarkers and kidney function between the wild-type and PiT-2 heterozygous knockout groups. Micro computed tomography analyses of femurs showed that haploinsufficiency of PiT-2 decreased trabecular bone mineral density in uremia. In vitro, sodium-dependent phosphate uptake was decreased in cultured vascular smooth muscle cells isolated from PiT-2 heterozygous knockout mice compared with those from wild-type mice. PiT-2 haploinsufficiency increased phosphate-induced calcification of cultured vascular smooth muscle cells compared to the wild-type. Furthermore, compared to wild-type vascular smooth muscle cells, PiT-2 deficient vascular smooth muscle cells had lower osteoprotegerin levels and increased matrix calcification, which was attenuated by osteoprotegerin supplementation. Thus, PiT-2 in vascular smooth muscle cells protects against phosphate-induced vascular calcification and may be a therapeutic target in the chronic kidney disease population.


Asunto(s)
Fosfatos/metabolismo , Insuficiencia Renal Crónica/complicaciones , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Calcificación Vascular/genética , Animales , Biomarcadores/sangre , Densidad Ósea/genética , Femenino , Haploinsuficiencia , Heterocigoto , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Osteoprotegerina/metabolismo , Fosfatos/administración & dosificación , Insuficiencia Renal Crónica/sangre , Uremia/complicaciones , Calcificación Vascular/sangre
2.
Exp Cell Res ; 333(1): 39-48, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25684711

RESUMEN

Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic phosphate (Pi) is a recognized risk factor. The type III sodium-dependent phosphate transporter, PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in vascular smooth muscle cells (VSMCs). However, the molecular mechanism(s) by which PiT-1 promotes these processes is unclear. In the present study, we confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport. Elevated Pi-induced signaling via ERK1/2 phosphorylation was abrogated in PiT-1 deficient VSMCs, but could be rescued by wild-type (WT) and a Pi transport-deficient PiT-1 mutant. Furthermore, both WT and transport-deficient PiT-1 mutants promoted osteochondrogenic differentiation as measured by decreased SM22α and increased osteopontin mRNA expression. Finally, compared to vector alone, expression of transport-deficient PiT-1 mutants promoted VSMC matrix mineralization, but not to the extent observed with PiT-1 WT. These data suggest that both Pi uptake-dependent and -independent functions of PiT-1 are important for VSMC processes mediating vascular calcification.


Asunto(s)
Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/fisiología , Animales , Transporte Biológico , Diferenciación Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatos/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Calcificación Vascular/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(8): 2913-8, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22308368

RESUMEN

Mechanical cues affect many important biological processes in metazoan cells, such as migration, proliferation, and differentiation. Such cues are thought to be detected by specialized mechanosensing molecules linked to the cytoskeleton, an intracellular network of protein filaments that provide mechanical rigidity to the cell and drive cellular shape change. The most abundant such filament, actin, forms branched networks nucleated by the actin-related protein (Arp) 2/3 complex that support or induce membrane protrusions and display adaptive behavior in response to compressive forces. Here we show that filamentous actin serves in a mechanosensitive capacity itself, by biasing the location of actin branch nucleation in response to filament bending. Using an in vitro assay to measure branching from curved sections of immobilized actin filaments, we observed preferential branch formation by the Arp2/3 complex on the convex face of the curved filament. To explain this behavior, we propose a fluctuation gating model in which filament binding or branch nucleation by Arp2/3 occur only when a sufficiently large, transient, local curvature fluctuation causes a favorable conformational change in the filament, and we show with Monte Carlo simulations that this model can quantitatively account for our experimental data. We also show how the branching bias can reinforce actin networks in response to compressive forces. These results demonstrate how filament curvature can alter the interaction of cytoskeletal filaments with regulatory proteins, suggesting that direct mechanotransduction by actin may serve as a general mechanism for organizing the cytoskeleton in response to force.


Asunto(s)
Citoesqueleto de Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/química , Actinas/metabolismo , Biocatálisis , Bioensayo , Simulación por Computador , Modelos Moleculares , Método de Montecarlo , Propiedades de Superficie
4.
Sci Rep ; 13(1): 3131, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823196

RESUMEN

Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.


Asunto(s)
Filoviridae , Fiebre Hemorrágica Ebola , Infección por el Virus Zika , Virus Zika , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Adenosina Monofosfato , Alanina , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológico
5.
Brain Pathol ; 27(1): 64-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822507

RESUMEN

Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium-dependent phosphate co-transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/- mice developed age-dependent basal ganglia calcification that formed in glymphatic pathway-associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate-induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate-induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway-associated arteriolar calcification.


Asunto(s)
Arteriolas/patología , Enfermedades de los Ganglios Basales/patología , Calcinosis/patología , Proteínas del Tejido Nervioso/deficiencia , Enfermedades Neurodegenerativas/patología , Fosfatos/líquido cefalorraquídeo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Animales , Enfermedades de los Ganglios Basales/líquido cefalorraquídeo , Calcinosis/líquido cefalorraquídeo , Catarata/genética , Plexo Coroideo/metabolismo , Epéndimo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microftalmía/genética , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Neuroimagen , Fosfatos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA