RESUMEN
BACKGROUND: Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES: The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS: We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS: Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION: Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Asunto(s)
Antígenos CD , Apirasa , Barrera Hematoencefálica , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Molécula 1 de Adhesión Celular Vascular , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antígenos CD/metabolismo , Apirasa/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Fibrinolíticos/uso terapéutico , Fibrinolíticos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Ratones Endogámicos C57BL , Proteínas Recombinantes/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
Diabetes mellitus encompasses two distinct disease processes: autoimmune Type 1 (T1D) and nonimmune Type 2 (T2D) diabetes. Despite the disparate aetiologies, the disease phenotype of hyperglycemia and the associated complications are similar. In this paper, we discuss the role of the CD39-adenosinergic axis in the pathogenesis of both T1D and T2D, with particular emphasis on the role of CD39 and CD73.
Asunto(s)
Adenosina/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Humanos , Páncreas/enzimología , Páncreas/patologíaRESUMEN
Hemophilic arthropathy (HA) is characterized by joint damage following recurrent joint bleeds frequently observed in patients affected by the clotting disorder hemophilia. Joint bleeds or hemarthroses trigger inflammation in the synovial tissue, which promotes damage to the articular cartilage. The plasminogen activation system is integral to fibrinolysis, and the urokinase plasminogen activator, or uPA in particular, is strongly upregulated following hemarthroses. uPA is a serine protease that catalyzes the production of plasmin, a broad-spectrum protease that can degrade fibrin as well as proteins of the joint extracellular matrix and cartilage. Both uPA and plasmin are able to proteolytically generate active forms of matrix metalloproteinases (MMPs). The MMPs are a family of >20 proteases that are secreted as inactive proenzymes and are activated extracellularly. MMPs are involved in the degradation of all types of collagen and proteoglycans that constitute the extracellular matrix, which provides structural support to articular cartilage. The MMPs have an established role in joint destruction following rheumatoid arthritis (RA). They degrade cartilage and bone, indirectly promoting angiogenesis. MMPs are also implicated in the pathology of osteoarthritis (OA), characterized by degradation of the cartilage matrix that precipitates joint damage and deformity. HA shares a number of overlapping pathological characteristics with RA and OA. Here we discuss how the plasminogen activation system and MMPs might exacerbate joint damage in HA, lending insight into novel possible therapeutic targets to reduce the comorbidity of hemophilia.
Asunto(s)
Artritis Reumatoide , Hemofilia A , Osteoartritis , Artritis Reumatoide/metabolismo , Colágeno , Precursores Enzimáticos , Fibrina , Fibrinolisina , Hemartrosis , Hemofilia A/complicaciones , Humanos , Metaloproteinasas de la Matriz/metabolismo , Péptido Hidrolasas , Plasminógeno , Proteoglicanos , Activador de Plasminógeno de Tipo UroquinasaRESUMEN
Stroke is caused by obstructed blood flow (ischaemia) or unrestricted bleeding in the brain (haemorrhage). Global brain ischaemia occurs after restricted cerebral blood flow e.g. during cardiac arrest. Following ischaemic injury, restoration of blood flow causes ischaemia-reperfusion (I/R) injury which worsens outcome. Secondary injury mechanisms after any stroke are similar, and encompass inflammation, endothelial dysfunction, blood-brain barrier (BBB) damage and apoptosis. We developed a new model of transient global forebrain I/R injury (dual carotid artery ligation; DCAL) and compared the manifestations of this injury with those in a conventional I/R injury model (middle-cerebral artery occlusion; MCAo) and with intracerebral haemorrhage (ICH; collagenase model). MRI revealed that DCAL produced smaller bilateral lesions predominantly localised to the striatum, whereas MCAo produced larger focal corticostriatal lesions. After global forebrain ischaemia mice had worse overall neurological scores, although quantitative locomotor assessment showed MCAo and ICH had significantly worsened mobility. BBB breakdown was highest in the DCAL model while apoptotic activity was highest after ICH. VCAM-1 upregulation was specific to ischaemic models only. Differential transcriptional upregulation of pro-inflammatory chemokines and cytokines and TLRs was seen in the three models. Our findings offer a unique insight into the similarities and differences in how biological processes are regulated after different types of stroke. They also establish a platform for analysis of therapies such as endothelial protective and anti-inflammatory agents that can be applied to all types of stroke.
Asunto(s)
Circulación Cerebrovascular/fisiología , Accidente Cerebrovascular Hemorrágico/patología , Accidente Cerebrovascular Isquémico/patología , Prosencéfalo/irrigación sanguínea , Daño por Reperfusión/patología , Animales , Antiinflamatorios/uso terapéutico , Apoptosis/inmunología , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Arterias Carótidas/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Colagenasas/administración & dosificación , Colagenasas/efectos adversos , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Accidente Cerebrovascular Hemorrágico/inmunología , Accidente Cerebrovascular Hemorrágico/fisiopatología , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/fisiopatología , Ligadura , Locomoción/fisiología , Imagen por Resonancia Magnética , Masculino , Ratones , Arteria Cerebral Media/fisiopatología , Prosencéfalo/diagnóstico por imagen , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Sustancias Protectoras/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/inmunología , Daño por Reperfusión/fisiopatología , Receptores Toll-Like/genética , Activación Transcripcional/inmunologíaRESUMEN
The contribution of cows' milk containing beta-casein protein A1 variant to the development of type 1 diabetes (T1D) has been controversial for decades. Despite epidemiological data demonstrating a relationship between A1 beta-casein consumption and T1D incidence, direct evidence is limited. We demonstrate that early life exposure to A1 beta-casein through the diet can modify progression to diabetes in non-obese diabetic (NOD) mice, with the effect apparent in later generations. Adult NOD mice from the F0 generation and all subsequent generations (F1 to F4) were fed either A1 or A2 beta-casein supplemented diets. Diabetes incidence in F0â»F2 generations was similar in both cohorts of mice. However, diabetes incidence doubled in the F3 generation NOD mice fed an A1 beta-casein supplemented diet. In F4 NOD mice, subclinical insulitis and altered glucose handling was evident as early as 10 weeks of age in A1 fed mice only. A significant decrease in the proportion of non-conventional regulatory T cell subset defined as CD4âºCD25-FoxP3⺠was evident in the F4 generation of A1 fed mice. This feeding intervention study demonstrates that dietary A1 beta-casein may affect glucose homeostasis and T1D progression, although this effect takes generations to manifest.
Asunto(s)
Caseínas/toxicidad , Diabetes Mellitus Tipo 1/etiología , Suplementos Dietéticos/toxicidad , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Caseínas/administración & dosificación , Células Cultivadas , Técnicas de Cocultivo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Microbioma Gastrointestinal , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Masculino , Ratones Endogámicos NOD , Factores de Riesgo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model. Mice null for CD39 (CD39KO), wild-type mice (WT), and mice overexpressing CD39 (CD39TG) were subjected to MLDS. Adoptive transfer experiments were performed to delineate the efficacy of tissue-restricted overexpression of CD39. The role of adenosine signaling was examined using mutant mice and pharmacological inhibition. The susceptibility to MLDS-induced diabetes was influenced by the level of expression of CD39. CD39KO mice developed diabetes more rapidly and with higher frequency than WT mice. In contrast, CD39TG mice were protected. CD39 overexpression conferred protection through the activation of adenosine 2A receptor and adenosine 2B receptor. Adoptive transfer experiments indicated that tissue-restricted overexpression of CD39 conferred robust protection, suggesting that this may be a useful strategy to protect islet grafts from T cell-mediated injury.