Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Curr Top Membr ; 91: 21-41, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080679

RESUMEN

The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.


Asunto(s)
Calcio , Enfermedades Cardiovasculares , Humanos , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Glicocálix/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834029

RESUMEN

The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.


Asunto(s)
Glicocálix , Glipicanos , Ratones , Animales , Masculino , Femenino , Glipicanos/genética , Glipicanos/metabolismo , Glicocálix/metabolismo , Ratones Noqueados , Células Endoteliales/metabolismo , Pulmón/metabolismo
3.
Pharmacol Res ; 172: 105813, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411733

RESUMEN

BACKGROUND: Vascular dysfunction is a checkpoint to the development of hypertension. Heparan sulfate proteoglycans (HSPG) participate in nitric oxide (NO) and calcium signaling, key regulators of vascular function. The relationship between HSPG-mediated NO and calcium signaling and vascular dysfunction has not been explored. Likewise, the role of HSPG on the control of systemic blood arterial pressure is unknown. Herein, we sought to determine if the HSPG syndecan 1 and glypican 1 control systemic blood pressure and the progression of hypertension. PURPOSE: To determine the mechanisms whereby glypican 1 and syndecan 1 regulate vascular tone and contribute to the development of noradrenergic hypertension. EXPERIMENTAL APPROACH AND KEY RESULTS: By assessing systemic arterial blood pressure we observed that syndecan 1 (Sdc1-/-) and glypican 1 (Gpc1-/-) knockout mice show a similar phenotype of decreased systolic blood pressure that is presented in a striking manner in the Gpc1-/- strain. Gpc1-/- mice are also uniquely protected from a norepinephrine hypertensive challenge failing to become hypertensive. This phenotype was associated with impaired calcium-dependent vasoconstriction and altered expression of calcium-sensitive proteins including SERCA and calmodulin. In addition, Gpc1-/- distinctively showed decreased IP3R activity and increased calcium storage in the endoplasmic reticulum. CONCLUSIONS AND IMPLICATIONS: Glypican 1 is a trigger for the development of noradrenergic hypertension that acts via IP3R- and calcium-dependent signaling pathways. Glypican 1 may be a potential target for the development of new therapies for resistant hypertension or conditions where norepinephrine levels are increased.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Calcio/metabolismo , Glipicanos/genética , Hipertensión , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Norepinefrina/farmacología , Sindecano-1/genética , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiología , Presión Sanguínea/efectos de los fármacos , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Curr Top Membr ; 91: ix-x, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080683
5.
Am J Pathol ; 185(5): 1251-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25773174

RESUMEN

The integrity of the lung alveolar epithelial barrier is required for the gas exchange and is important for immune regulation. Alveolar epithelial barrier is composed of flat type I cells, which make up approximately 95% of the gas-exchange surface, and cuboidal type II cells, which secrete surfactants and modulate lung immunity. p120-catenin (p120; gene symbol CTNND1) is an important component of adherens junctions of epithelial cells; however, its function in lung alveolar epithelial barrier has not been addressed in genetic models. Here, we created an inducible type II cell-specific p120-knockout mouse (p120EKO). The mutant lungs showed chronic inflammation, and the alveolar epithelial barrier was leaky to (125)I-albumin tracer compared to wild type. The mutant lungs also demonstrated marked infiltration of inflammatory cells and activation of NF-κB. Intracellular adhesion molecule 1, Toll-like receptor 4, and macrophage inflammatory protein 2 were all up-regulated. p120EKO lungs showed increased expression of the surfactant proteins Sp-B, Sp-C, and Sp-D, and displayed severe inflammation after pneumonia caused by Pseudomonas aeruginosa compared with wild type. In p120-deficient type II cell monolayers, we observed reduced transepithelial resistance compared to control, consistent with formation of defective adherens junctions. Thus, although type II cells constitute only 5% of the alveolar surface area, p120 expressed in these cells plays a critical role in regulating the innate immunity of the entire lung.


Asunto(s)
Células Epiteliales Alveolares/inmunología , Cateninas/inmunología , Inmunidad Innata/inmunología , Pulmón/inmunología , Células Epiteliales Alveolares/metabolismo , Animales , Western Blotting , Permeabilidad Capilar/inmunología , Cateninas/metabolismo , Femenino , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Catenina delta
6.
Clin Sci (Lond) ; 129(1): 39-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25700020

RESUMEN

The mechanisms whereby testosterone increases cardiovascular risk are not clarified. However, oxidative stress and inflammation seem to be determinants. Herein, we sought to determine whether exogenous testosterone, at physiological levels, induces leucocyte migration, a central feature in immune and inflammatory responses and the mediating mechanisms. We hypothesized that testosterone induces leucocyte migration via NADPH oxidase (NADPHox)-driven reactive oxygen species (ROS) and cyclooxygenase (COX)-dependent mechanisms. Sixteen-week-old Wistar rats received an intraperitoneal injection (5 ml) of either testosterone (10(-7) mol/l) or saline. Rats were pre-treated with 5 ml of sodium salicylate (SS, non-selective COX inhibitor, 1.25 × 10(-3) mol/l, 1 h prior to testosterone or saline), flutamide (androgen receptor antagonist, 10(-5) mol/l), apocynin (NADPHox inhibitor, 3 × 10(-4) mol/l), N-[2-Cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS398, COX2 inhibitor, 10(-4) mol/l) or saline, 4 h before testosterone or saline administration. Leucocyte migration was assessed 24 h after testosterone administration by intravital microscopy of the mesenteric bed. Serum levels of testosterone were measured by radioimmunoassay. NADPHox activity was assessed in membrane fractions of the mesenteric bed by dihydroethidium (DHE) fluorescence and in isolated vascular smooth muscle cells (VSMC) by HPLC. NADPHox subunits and VCAM (vascular cell adhesion molecule) expression were determined by immunoblotting. Testosterone administration did not change serum levels of endogenous testosterone, but increased venular leucocyte migration to the adventia, NADPHox activity and expression (P < 0.05). These effects were blocked by flutamide. SS inhibited testosterone-induced leucocyte migration (P<0.05). Apocynin and NS398 abolished testosterone-induced leucocyte migration and NADPHox activity (P<0.05). Testosterone induces leucocyte migration via NADPHox- and COX2-dependent mechanisms and may contribute to inflammatory processes and oxidative stress in the vasculature potentially increasing cardiovascular risk.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Leucocitos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/farmacología , Acetofenonas/farmacología , Andrógenos/farmacología , Animales , Western Blotting , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inyecciones Intraperitoneales , Leucocitos/citología , Leucocitos/metabolismo , Masculino , Venas Mesentéricas/citología , Venas Mesentéricas/efectos de los fármacos , Venas Mesentéricas/metabolismo , Microscopía por Video/métodos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Nitrobencenos/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Superóxidos/metabolismo , Testosterona/administración & dosificación
7.
Am J Physiol Heart Circ Physiol ; 306(11): H1485-94, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24658017

RESUMEN

Testosterone exerts both beneficial and harmful effects on the cardiovascular system. Considering that testosterone induces reactive oxygen species (ROS) generation and ROS activate cell death signaling pathways, we tested the hypothesis that testosterone induces apoptosis in vascular smooth muscle cells (VSMCs) via mitochondria-dependent ROS generation. Potential mechanisms were addressed. Cultured VSMCs were stimulated with testosterone (10(-7) mol/l) or vehicle (2-12 h) in the presence of flutamide (10(-5) mol/l), CCCP (10(-6) mol/l), mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP; 3 × 10(-5) mol/l), Z-Ile-Glu(O-ME)-Thr-Asp(O-Me) fluoromethyl ketone (Z-IETD-FMK; 10(-5) mol/l), or vehicle. ROS were determined with lucigenin and dichlorodihydrofluorescein; apoptosis, with annexin V and calcein; O2 consumption, with a Clark-type electrode, and procaspases, caspases, cytochrome c, Bax, and Bcl-2 levels by immunoblotting. Testosterone induced ROS generation (relative light units/mg protein, 2 h; 162.6 ± 16 vs. 100) and procaspase-3 activation [arbitrary units, (AU), 6 h; 166.2 ± 19 vs. 100]. CCCP, MnTMPyP, and flutamide abolished these effects. Testosterone increased annexin-V fluorescence (AU, 197.6 ± 21.5 vs. 100) and decreased calcein fluorescence (AU, 34.4 ± 6.4 vs. 100), and O2 consumption (nmol O2/min, 18.6 ± 2.0 vs. 34.4 ± 3.9). Testosterone also reduced Bax-to-Bcl-2 ratio but not cytochrome-c release from mitochondria. Moreover, testosterone (6 h) induced cleavage of procaspase 8 (AU, 161.1 ± 13.5 vs. 100) and increased gene expression of Fas ligand (2(ΔΔCt), 3.6 ± 1.2 vs. 0.7 ± 0.5), and TNF-α (1.7 ± 0.4 vs. 0.3 ± 0.1). CCCP, MnTMPyP, and flutamide abolished these effects. These data indicate that testosterone induces apoptosis in VSMCs via the extrinsic apoptotic pathway with the involvement of androgen receptor activation and mitochondria-generated ROS.


Asunto(s)
Andrógenos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Testosterona/farmacología , Antagonistas de Andrógenos/farmacología , Animales , Caspasas/metabolismo , Flutamida/farmacología , Masculino , Mitocondrias/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
8.
BMC Anesthesiol ; 14: 57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25097454

RESUMEN

BACKGROUND: Acute lung injury (ALI) is associated with high mortality due to the lack of effective therapeutic strategies. Mechanical ventilation itself can cause ventilator-induced lung injury. Pulmonary vascular barrier function, regulated in part by Src kinase-dependent phosphorylation of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1), plays a crucial role in the development of protein-/neutrophil-rich pulmonary edema, the hallmark of ALI. Amide-linked local anesthetics, such as ropivacaine, have anti-inflammatory properties in experimental ALI. We hypothesized ropivacaine may attenuate inflammation in a "double-hit" model of ALI triggered by bacterial endotoxin plus hyperinflation via inhibition of Src-dependent signaling. METHODS: C57BL/6 (WT) and ICAM-1 (-/-) mice were exposed to either nebulized normal saline (NS) or lipopolysaccharide (LPS, 10 mg) for 1 hour. An intravenous bolus of 0.33 mg/kg ropivacaine or vehicle was followed by mechanical ventilation with normal (7 ml/kg, NTV) or high tidal volume (28 ml/kg, HTV) for 2 hours. Measures of ALI (excess lung water (ELW), extravascular plasma equivalents, permeability index, myeloperoxidase activity) were assessed and lungs were homogenized for Western blot analysis of phosphorylated and total Src, ICAM-1 and caveolin-1. Additional experiments evaluated effects of ropivacaine on LPS-induced phosphorylation/expression of Src, ICAM-1 and caveolin-1 in human lung microvascular endothelial cells (HLMVEC). RESULTS: WT mice treated with LPS alone showed a 49% increase in ELW compared to control animals (p = 0.001), which was attenuated by ropivacaine (p = 0.001). HTV ventilation alone increased measures of ALI even more than LPS, an effect which was not altered by ropivacaine. LPS plus hyperinflation ("double-hit") increased all ALI parameters (ELW, EVPE, permeability index, MPO activity) by 3-4 fold compared to control, which were again decreased by ropivacaine. Western blot analyses of lung homogenates as well as HLMVEC treated in culture with LPS alone showed a reduction in Src activation/expression, as well as ICAM-1 expression and caveolin-1 phosphorylation. In ICAM-1 (-/-) mice, neither addition of LPS to HTV ventilation alone nor ropivacaine had an effect on the development of ALI. CONCLUSIONS: Ropivacaine may be a promising therapeutic agent for treating the cause of pulmonary edema by blocking inflammatory Src signaling, ICAM-1 expression, leukocyte infiltration, and vascular hyperpermeability.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Amidas/farmacología , Anestésicos Locales/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Lesión Pulmonar Aguda/etiología , Animales , Caveolina 1/genética , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Molécula 1 de Adhesión Intercelular/genética , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Edema Pulmonar/prevención & control , Ropivacaína , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Familia-src Quinasas/metabolismo
9.
Circ Res ; 106(8): 1363-73, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20339118

RESUMEN

RATIONALE: Although Nox5 (Nox2 homolog) has been identified in the vasculature, its regulation and functional significance remain unclear. OBJECTIVES: We sought to test whether vasoactive agents regulate Nox5 through Ca(2+)/calmodulin-dependent processes and whether Ca(2+)-sensitive Nox5, associated with Rac-1, generates superoxide (O(2)(*-)) and activates growth and inflammatory responses via mitogen-activated protein kinases in human endothelial cells (ECs). METHODS AND RESULTS: Cultured ECs, exposed to angiotensin II (Ang II) and endothelin (ET)-1 in the absence and presence of diltiazem (Ca(2+) channel blocker), calmidazolium (calmodulin inhibitor), and EHT1864 (Rac-1 inhibitor), were studied. Nox5 was downregulated with small interfering RNA. Ang II and ET-1 increased Nox5 expression (mRNA and protein). Effects were inhibited by actinomycin D and cycloheximide and blunted by diltiazem, calmidazolium and low extracellular Ca(2+) ([Ca(2+)](e)). Ang II and ET-1 activated NADPH oxidase, an effect blocked by low [Ca(2+)](e), but not by EHT1864. Nox5 knockdown abrogated agonist-stimulated O(2)(*-) production and inhibited phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not p38 MAPK (mitogen-activated protein kinase) or SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase). Nox5 small interfering RNA blunted Ang II-induced, but not ET-1-induced, upregulation of proliferating-cell nuclear antigen and vascular cell adhesion molecule-1, important in growth and inflammation. CONCLUSIONS: Human ECs possess functionally active Nox5, regulated by Ang II and ET-1 through Ca(2+)/calmodulin-dependent, Rac-1-independent mechanisms. Nox5 activation by Ang II and ET-1 induces ROS generation and ERK1/2 phosphorylation. Nox5 is involved in ERK1/2-regulated growth and inflammatory signaling by Ang II but not by ET-1. We elucidate novel mechanisms whereby vasoactive peptides regulate Nox5 in human ECs and demonstrate differential Nox5-mediated functional responses by Ang II and ET-1. Such phenomena link Ca(2+)/calmodulin to Nox5 signaling, potentially important in the regulation of endothelial function by Ang II and ET-1.


Asunto(s)
Angiotensina II/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Células Endoteliales/enzimología , Endotelina-1/metabolismo , Proteínas de la Membrana/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calmodulina/antagonistas & inhibidores , Células Cultivadas , Diltiazem/farmacología , Células Endoteliales/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Humanos , Imidazoles/farmacología , Inflamación/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , NADPH Oxidasa 5 , NADPH Oxidasas/genética , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Pironas/farmacología , Quinolinas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo , Factores de Tiempo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores
10.
Cardiovasc Eng Technol ; 11(6): 655-662, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33006050

RESUMEN

PURPOSE: Acute increases in hydrostatic pressure activate endothelial signaling pathways that modulate barrier function and vascular permeability. We investigated the role the glycocalyx and established mechanotransduction pathways in pressure-induced albumin transport across rat lung microvascular endothelial cells. METHODS: Rat lung microvascular endothelial cells (RLMEC) were cultured on Costar Snapwell chambers. Cell morphology was assessed using silver nitrate staining. RLMEC were exposed to zero pressure (Control) or 30 cmH2O (Pressure) for 30 or 60 min. Intracellular albumin uptake and transcellular albumin transport was quantified. Transcellular transport was reported as solute flux (Js) and an effective permeability coefficient (Pe). The removal of cell surface heparan sulfates (heparinase), inhibition of NOS (L-NAME) and reactive oxygen species (apocynin, Apo) was investigated. RESULTS: Acute increase in hydrostatic pressure augmented albumin uptake by 30-40% at 60 min and Js and Pe both increased significantly. Heparinase increased albumin uptake but attenuated transcellular transport while L-NAME attenuated both pressure-dependent albumin uptake and transport. Apo interrupted albumin uptake under both control and pressure conditions, leading to a near total lack of transcellular transport, suggesting a different mechanism and/or site of action. CONCLUSION: Pressure-dependent albumin uptake and transcellular transport is another component of endothelial mechanotransduction and associated regulation of solute flux. This novel albumin uptake and transport pathway is regulated by heparan sulfates and eNOS. Albumin uptake is sensitive to ROS. The physiological and clinical implications of this albumin transport are discussed.


Asunto(s)
Células Endoteliales/metabolismo , Glicocálix/metabolismo , Pulmón/irrigación sanguínea , Microvasos/metabolismo , Albúmina Sérica Bovina/metabolismo , Transcitosis , Animales , Células Cultivadas , Heparitina Sulfato/metabolismo , Presión Hidrostática , Cinética , Mecanotransducción Celular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
11.
Oxid Med Cell Longev ; 2020: 2563764, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104529

RESUMEN

Norepinephrine (NE) is the naturally occurring adrenergic agonist that is released in response to hypotension, and it is routinely administered in clinical settings to treat moderate to severe hypotension that may occur during general anesthesia and shock states. Although NE has incontestable beneficial effects on blood pressure maintenance during hypotensive conditions, deleterious effects of NE on endothelial cell function may occur. In particular, the role of reactive oxygen species (ROS) and NADPH oxidase (Nox) on the deleterious effects of NE on endothelial cell function have not been fully elucidated. Therefore, we investigated the effects of NE on ROS production in rat lung microvascular endothelial cells (RLMEC) and its contribution to cell death. RLMEC were treated with NE (5 ng/mL) for 24 hours and ROS production was assessed by CellROX and DCFDA fluorescence. Nox activity was assessed by NADPH-stimulated ROS production in isolated membranes and phosphorylation of p47phox; cell death was assessed by flow cytometry and DNA fragmentation. Caspase activation was assessed by fluorescent microscopy. Nox1, Nox2, and Nox4 mRNA expression was assessed by real-time PCR. NE increased ROS production, Nox activity, p47phox phosphorylation, Nox2 and Nox4 mRNA content, caspase-3 activation, and RLMEC death. Phentolamine, an α 1-adrenoreceptor antagonist, inhibited NE-induced ROS production and Nox activity and partly inhibited cell death while ß-blockade had no effect. Apocynin and PEGSOD inhibited NE-induced caspase-3 activation and cell death while direct inhibition of caspase-3 abrogated NE-induced cell death. PEG-CAT inhibited NE-induced cell death but not caspase-3 activation. Collectively, these results indicate that NE induces RLMEC death via activation of Nox by α-adrenergic signaling and caspase-3-dependent pathways. NE has deleterious effects on RLMECs that may be important to its long-term therapeutic use.


Asunto(s)
Caspasa 3/metabolismo , Células Endoteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , NADPH Oxidasas/metabolismo , Norepinefrina/toxicidad , Acetofenonas/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Inhibidores de Caspasas/farmacología , Muerte Celular , Células Endoteliales/metabolismo , Pulmón/metabolismo , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Fentolamina/farmacología , Polietilenglicoles/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/farmacología
12.
Sci Rep ; 9(1): 6696, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040342

RESUMEN

Caveolae are plasma membrane invaginations enriched with high cholesterol and sphingolipid content; they also contain caveolin proteins in their structure. Endothelial nitric oxide synthase (eNOS), an enzyme that synthesizes nitric oxide (NO) by converting L-arginine to L-citrulline, is highly concentrated in plasma membrane caveolae. Hypertension is associated with decreased NO production and impaired endothelium-dependent relaxation. Understanding the molecular mechanisms that follow hypertension is important. For this study, we hypothesized that spontaneously hypertensive rat (SHR) vessels should have a smaller number of caveolae, and that the caveolae structure should be disrupted in these vessels. This should impair the eNOS function and diminish NO bioavailability. Therefore, we aimed to investigate caveolae integrity and density in SHR aortas and mesenteric arteries and the role played by caveolae in endothelium-dependent relaxation. We have been able to show the presence of caveolae-like structures in SHR aortas and mesenteric arteries. Increased phenylephrine-induced contractile response after treatment with dextrin was related to lower NO release. In addition, impaired acetylcholine-induced endothelium-dependent relaxation could be related to decreased caveolae density in SHR vessels. The most important finding of this study was that cholesterol depletion with dextrin induced eNOS phosphorylation at Serine1177 (Ser1177) and boosted reactive oxygen species (ROS) production in normotensive rat and SHR vessels, which suggested eNOS uncoupling. Dextrin plus L-NAME or BH4 decreased ROS production in aorta and mesenteric arteries supernatant's of both SHR and normotensive groups. Human umbilical vein endothelial cells (HUVECs) treated with dextrin confirmed eNOS uncoupling, as verified by the reduced eNOS dimer/monomer ratio. BH4, L-arginine, or BH4 plus L-arginine inhibited eNOS monomerization. All these results showed that caveolae structure and integrity are essential for endothelium-dependent relaxation. Additionally, a smaller number of caveolae is associated with hypertension. Finally, caveolae disruption promotes eNOS uncoupling in normotensive and hypertensive rat vessels and in HUVECs.


Asunto(s)
Caveolas/patología , Endotelio Vascular/fisiopatología , Hipertensión/fisiopatología , Arterias Mesentéricas/patología , Especies Reactivas de Oxígeno/metabolismo , Acetilcolina/farmacología , Animales , Aorta/metabolismo , Aorta/patología , Caveolas/metabolismo , Caveolas/ultraestructura , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilefrina/farmacología , Ratas Endogámicas SHR , Ratas Wistar , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
13.
Life Sci ; 222: 22-28, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822427

RESUMEN

AIMS: Increases in hydrostatic pressure results in endothelial hyperpermeability via eNOS-dependent pathways. Ropivacaine is known to inhibit eNOS activation and to attenuate lung injury. Herein, we sought to determine if ropivacaine regulates pressure-induced lung endothelial hyperpermeability. MAIN METHODS: The effects of ropivacaine on lung permeability were assessed in two models of acute hypertension (AH): the isolated perfused lung preparation where acute increases in left atrial pressure model the hemodynamic changes of severe hypertension, and an animal model of AH induced by norepinephrine. In the IPL model, whole lung filtration coefficient (Kf) was used as the index of lung permeability; pulmonary artery pressure (Ppa), pulmonary capillary pressures (Ppc), and zonal characteristics (ZC) were measured to assess the effects of ropivacaine on hemodynamics and their relationship to Kf2/Kf1. In vivo, ropivacaine effects were investigated on indices of pulmonary edema (changes in PaO2, lung wet-to-dry ratio), changes in plasma volume and nitric oxide (NO) production. KEY FINDINGS: Ropivacaine provided robust protection from pressure-dependent barrier failure; it inhibited pressure-induced increases in Kf without affecting Ppa, Ppc or ZC. In vivo, ropivacaine prevented pressure-induced lung edema and associated hyperpermeability as evidence by maintaining PaO2, lung wet-to-dry ratio and plasma volume in levels similar to sham rats. Ropivacaine inhibited pressure-induced NO production as evidenced by decreased lung nitro-tyrosine content when compared to hypertensive lungs. SIGNIFICANCE: Collectively these data show that ropivacaine inhibits pressure-induced lung endothelial hyperpermeability and suggest that ropivacaine may be a clinically useful agent to prevent endothelial hyperpermeability when pulmonary pressure is acutely increased.


Asunto(s)
Permeabilidad Capilar/fisiología , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Edema Pulmonar/metabolismo , Ropivacaína/uso terapéutico , Enfermedad Aguda , Anestésicos Locales/farmacología , Anestésicos Locales/uso terapéutico , Animales , Permeabilidad Capilar/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Ropivacaína/farmacología
14.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30355657

RESUMEN

Aims: Acute increases in left ventricular end diastolic pressure (LVEDP) can induce pulmonary edema (PE). The mechanism(s) for this rapid onset edema may involve more than just increased fluid filtration. Lung endothelial cell permeability is regulated by pressure-dependent activation of nitric oxide synthase (NOS). Herein, we demonstrate that pressure-dependent NOS activation contributes to vascular failure and PE in a model of acute heart failure (AHF) caused by hypertension.Methods and results: Male Sprague-Dawley rats were anesthetized and mechanically ventilated. Acute hypertension was induced by norepinephrine (NE) infusion and resulted in an increase in LVEDP and pulmonary artery pressure (Ppa) that were associated with a rapid fall in PaO2, and increases in lung wet/dry ratio and injury scores. Heart failure (HF) lungs showed increased nitrotyrosine content and ROS levels. L-NAME pretreatment mitigated the development of PE and reduced lung ROS concentrations to sham levels. Apocynin (Apo) pretreatment inhibited PE. Addition of tetrahydrobiopterin (BH4) to AHF rats lung lysates and pretreatment of AHF rats with folic acid (FA) prevented ROS production indicating endothelial NOS (eNOS) uncoupling.Conclusion: Pressure-dependent NOS activation leads to acute endothelial hyperpermeability and rapid PE by an increase in NO and ROS in a model of AHF. Acute increases in pulmonary vascular pressure, without NOS activation, was insufficient to cause significant PE. These results suggest a clinically relevant role of endothelial mechanotransduction in the pathogenesis of AHF and further highlights the concept of active barrier failure in AHF. Therapies targetting the prevention or reversal of endothelial hyperpermeability may be a novel therapeutic strategy in AHF.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Hipertensión Pulmonar/enzimología , Mecanotransducción Celular , Óxido Nítrico Sintasa/genética , Edema Pulmonar/enzimología , Animales , Biopterinas/administración & dosificación , Biopterinas/análogos & derivados , Presión Sanguínea/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/patología , Ácido Fólico/administración & dosificación , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Norepinefrina/efectos adversos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Tirosina/administración & dosificación , Tirosina/análogos & derivados
15.
J Neuroimmunol ; 310: 72-81, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28778449

RESUMEN

Heparanase is a heparan sulfate degrading enzyme that cleaves heparan sulfate (HS) chains present on HS proteoglycans (HSPGs), and has been well characterized for its roles in tumor metastasis and inflammation. However, heparanase is emerging as a contributing factor in the genesis and severity of a variety of neurodegenerative diseases and conditions. This is in part due to the wide variety of HSPGs on which the presence or absence of HS moieties dictates protein function. This includes growth factors, chemokines, cytokines, as well as components of the extracellular matrix (ECM) which in turn regulate leukocyte infiltration into the CNS. Roles for heparanase in stroke, Alzheimer's disease, and glioma growth have been described; roles for heparanase in other disease such as multiple sclerosis (MS) are less well established. However, given its known roles in inflammation and leukocyte infiltration, it is likely that heparanase also contributes to MS pathology. In this review, we will briefly summarize what is known about heparanase roles in the CNS, and speculate as to its potential role in regulating disease progression in MS and its animal model EAE (experimental autoimmune encephalitis), which may justify testing of heparanase inhibitors for MS treatment.


Asunto(s)
Sistema Nervioso Central/enzimología , Glucuronidasa/metabolismo , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/patología , Animales , Inhibidores Enzimáticos/uso terapéutico , Glucuronidasa/antagonistas & inhibidores , Humanos , Esclerosis Múltiple/tratamiento farmacológico
16.
Pulm Circ ; 7(3): 719-726, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28727979

RESUMEN

Hypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (Kf). Isolated perfused rat lung preparation was used to measure whole lung filtration coefficient (Kf) at two levels of left atrial pressure (PLA = 7.5 versus 15 cm H2O) and at low tidal volume (LVt) versus standard tidal volume (STVt) ventilation. The ratio of Kf2/Kf1 was used as the index of whole lung permeability. Double occlusion pressure, pulmonary artery pressure, pulmonary capillary pressures, and zonal characteristics (ZC) were measured to assess effects of HCA on hemodynamics and their relationship to Kf2/Kf1. An increase in PLA2 from 7.5 to 15 cm H2O resulted in a 4.9-fold increase in Kf2/Kf1 during LVt and a 4.8-fold increase during STVt. During LVt, HCA reduced Kf2/Kf1 by 2.7-fold and reduced STVt Kf2/Kf1 by 5.2-fold. Analysis of pulmonary hemodynamics revealed no significant differences in filtration forces in response to HCA. HCA interferes with lung vascular mechanotransduction and prevents pressure-dependent increases in whole lung filtration coefficient. These results contribute to a further understanding of the lung protective effects of HCA.

17.
Shock ; 45(4): 338-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26513707

RESUMEN

In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.


Asunto(s)
Endotelio Vascular/inmunología , Epitelio/inmunología , Glicocálix/inmunología , Inmunomodulación , Heridas y Lesiones/inmunología , Adolescente , Adulto , Factores de Edad , Animales , Niño , Preescolar , Femenino , Humanos , Inflamación/economía , Inflamación/inmunología , Inflamación/mortalidad , Inflamación/terapia , Masculino , Resucitación/economía , Resucitación/métodos , Índices de Gravedad del Trauma , Estados Unidos/epidemiología , Heridas y Lesiones/economía , Heridas y Lesiones/mortalidad , Heridas y Lesiones/terapia
18.
Aging Dis ; 4(1): 38-49, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23423545

RESUMEN

Aging is a major risk factor for cardiovascular diseases, one of the main world-wide causes of death. Several structural and functional changes occur in the cardiovascular system during the aging process and the mechanisms involved in such alterations are yet to be completely described. BK channels are transmembrane proteins that play a key role in many physiological processes, including regulation of vascular tone. In vascular smooth muscle cells, BK opening and the consequent efflux of potassium (K(+)) leads to membrane hyperpolarization, which is followed by the closure of voltage-dependent Ca(2+) channels, reduction of Ca(2+) entry and vasodilatation. BK regulates nitric oxide-mediated vasodilatation and thus is crucial for normal endothelial function. Herein we will briefly review general structural properties of BK and focus on their function in the cardiovascular system emphasizing their role in cardiovascular aging and diseases.

19.
Steroids ; 78(3): 341-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23261957

RESUMEN

OBJECTIVE: The increased risk of cardiovascular diseases in postmenopausal women has been linked to the decrease in plasma estrogen levels. Preparation of conjugate equine estrogens (CEE) is one of the most routinely used hormone therapy in postmenopausal women. However, studies on the vascular effects of CEE are still sparse and the mechanism of action is not completely elucidated. In this context, we have determined the effects of CEE in the vascular oxidative stress observed in ovariectomyzed (OVX) spontaneously hypertensive rats (SHR). Mechanisms by which CEE interferes with redox-sensitive pathways and endothelial function were also determined. RESULTS: Aortas from OVX rats exhibited increased generation of reactive oxygen species (ROS), NADPH oxidase activity and reduced catalase protein expression, compared to aortas from sham SHR. Endothelium-intact aortic rings from OVX were hyperreactive to NE when compared to Sham aortas. This hyperreactivity was corrected by superoxide dismutase (SOD), catalase, and endothelium removal. Treatment of OVX-SHR with CEE reduced vascular ROS generation, NADPH oxidase activity, enhanced SOD and catalase expression and also corrected the NE-hyperreactivity in aortic rings from OVX-SHR. CONCLUSION: Our study indicates a potential benefit of CEE therapy through a mechanism that involves reduction in oxidative stress, improving endothelial function in OVX hypertensive rats.


Asunto(s)
Aorta/efectos de los fármacos , Estrógenos Conjugados (USP)/farmacología , Hipertensión/tratamiento farmacológico , Ovariectomía , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Aorta/metabolismo , Catalasa/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Caballos , Humanos , Hipertensión/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Técnicas de Cultivo de Tejidos
20.
Hypertension ; 59(6): 1263-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22566500

RESUMEN

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , NADPH Oxidasas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/efectos de los fármacos , Testosterona/farmacología , Antagonistas de Andrógenos/farmacología , Andrógenos/farmacología , Animales , Células Cultivadas , Cicloheximida/farmacología , Dactinomicina/farmacología , Flutamida/farmacología , Immunoblotting , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Pirimidinas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA