RESUMEN
Low-frequency intervals that can be used to study the secondary structure of proteins are determined. Compared are Raman spectra of keratins from unpigmented human hair, measured in two experimental configurations: with excitation radiation coaxial with the hair and perpendicular to it. Based on the polarization sensitivity, the bands peaked at 150 and 221 cm-1 are assigned to vibrations of α-helical structures. The comparison of Raman spectra of hair fragments with different contents of secondary structure elements shows that the vibrations of ß-structure are manifested in a spectral interval of 270-340 cm-1. The results obtained for a particular object (hair keratin) can be used in the study of the secondary structure of proteins.
RESUMEN
Methods to control polymorphic modifications of phthalocyanines using optical (laser) radiation and possible photoinduced transformations of polymorphs are of practical interest in problems of identification and attribution of paintings, laser (micro)sampling, and the development of phthalocyanine structures for technical applications in optics, optoelectronics, and medicine. In this work, we compare the thermal and laser-induced changes of a gouache paint layer based on copper phthalocyanine (CuPc) PB15. The thermally induced color changes of the paint layer are quantified using the CIE Lab D65/10 color space. (Nano)rods formed in the paint layer when the sample is heated to 450°C at normal pressure without humidity control are studied using absorption spectroscopy, Raman microspectroscopy, and scanning electron microscopy. It is shown that the formation of (nano)rods is related to the αâß polymorph transition of CuPc. Low-frequency markers of the CuPc ß-polymorph are revealed in the Raman spectra. For the sample containing (nano)rods, the a* color coordinate substantially increases (by about 30 units), whereas the L* and b* coordinates remain almost unchanged. Irradiation with a single nanosecond laser pulse at a wavelength of 532 nm leads to the laser ablation of the paint layer at fluences exceeding a threshold level of about 3 J/cm2. Irradiation at fluences of greater than 0.5 J/cm2, but lower than the ablation threshold leads to color change of the paint layer due to the αâε transition of CuPc. Similar transformations are observed at the periphery of and inside ablation crater.
RESUMEN
An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.
RESUMEN
Raman, scanning electron, and optical microscopy of hair and spectrophotometry of soluble hair proteins are used to study the effect of UV-vis radiation on white hair. The samples of a healthy subject are irradiated using a mercury lamp and compared with non-irradiated (control) hair. The cuticle damage with partial exfoliation is revealed with the aid of SEM and optical microscopy of semifine sections. Gel filtration chromatography shows that the molecular weight of soluble proteins ranges from 5 to 7kDa. Absorption spectroscopy proves an increase in amount of thiols in a heavier fraction of the soluble proteins of irradiated samples under study. Raman data indicate a decrease in the amount of SS and CS bonds in cystines and an increase in the amount of SH bonds due to irradiation. Such changes are more pronounced in peripheral regions of hair. Conformational changes of hair keratins presumably related to the cleavage of disulfide bonds, follow from variations in amide I and low-frequency Raman bands. An increase in the content of thiols in proteins revealed by both photometric data on soluble proteins and Raman microspectroscopy of hair cuts can be used to develop a protocol of the analysis of photoinduced hair modification.