Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Development ; 142(13): 2364-74, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26002917

RESUMEN

Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Neovascularización Fisiológica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Recuento de Células , Movimiento Celular , Proliferación Celular , Forma de la Célula , Proteína 61 Rica en Cisteína/deficiencia , Proteína 61 Rica en Cisteína/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Dominios Homologos src
2.
Proc Natl Acad Sci U S A ; 111(39): E4086-95, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25228773

RESUMEN

Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general.


Asunto(s)
Factor Nuclear 6 del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Retina/citología , Retina/embriología , Factores de Transcripción/metabolismo , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 6 del Hepatocito/deficiencia , Factor Nuclear 6 del Hepatocito/genética , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Embarazo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Horizontales de la Retina/citología , Células Horizontales de la Retina/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
3.
J Biol Chem ; 286(11): 9542-54, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21212276

RESUMEN

Retinal vascular damages are the cardinal hallmarks of retinopathy of prematurity (ROP), a leading cause of vision impairment and blindness in childhood. Both angiogenesis and vasculogenesis are disrupted in the hyperoxia-induced vaso-obliteration phase, and recapitulated, although aberrantly, in the subsequent ischemia-induced neovessel formation phase of ROP. Yet, whereas the histopathological features of ROP are well characterized, many key modulators with a therapeutic potential remain unknown. The CCN1 protein also known as cysteine-rich protein 61 (Cyr61) is a dynamically expressed, matricellular protein required for proper angiogenesis and vasculogenesis during development. The expression of CCN1 becomes abnormally reduced during the hyperoxic and ischemic phases of ROP modeled in the mouse eye with oxygen-induced retinopathy (OIR). Lentivirus-mediated re-expression of CCN1 enhanced physiological adaptation of the retinal vasculature to hyperoxia and reduced pathological angiogenesis following ischemia. Remarkably, injection into the vitreous of OIR mice of hematopoietic stem cells (HSCs) engineered to express CCN1 harnessed ischemia-induced neovessel outgrowth without adversely affecting the physiological adaptation of retinal vessels to hyperoxia. In vitro exposure of HSCs to recombinant CCN1 induced integrin-dependent cell adhesion, migration, and expression of specific endothelial cell markers as well as many components of the Wnt signaling pathway including Wnt ligands, their receptors, inhibitors, and downstream targets. CCN1-induced Wnt signaling mediated, at least in part, adhesion and endothelial differentiation of cultured HSCs, and inhibition of Wnt signaling interfered with normalization of the retinal vasculature induced by CCN1-primed HSCs in OIR mice. These newly identified functions of CCN1 suggest its possible therapeutic utility in ischemic retinopathy.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Neovascularización Patológica/metabolismo , Retina/metabolismo , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/farmacología , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Isquemia/patología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Retina/patología , Vasos Retinianos/patología , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Mol Cancer Ther ; 17(8): 1659-1669, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29802120

RESUMEN

DNA damage repair capacity is required for cells to survive catastrophic DNA damage and proliferate under conditions of intratumoral stress. The ability of the minor histone protein H2AX to serve as a hub for the assembly of a productive DNA damage repair complex is a necessary step in preventing DNA damage-induced cell death. The Eyes Absent (EYA) proteins dephosphorylate the terminal tyrosine residue of H2AX, thus permitting assembly of a productive DNA repair complex. Here, we use genetic and chemical biology approaches to separately query the roles of host vascular endothelial cell and tumor cell EYA in tumor growth. Deletion of Eya3 in host endothelial cells significantly reduced tumor angiogenesis and limited tumor growth in xenografts. Deletion of Eya3 in tumor cells reduced tumor cell proliferation and tumor growth without affecting tumor angiogenesis. A chemical inhibitor of the EYA tyrosine phosphatase activity inhibited both tumor angiogenesis and tumor growth. Simultaneously targeting the tumor vasculature and tumor cells is an attractive therapeutic strategy because it could counter the development of the more aggressive phenotype known to emerge from conventional antiangiogenic agents. Mol Cancer Ther; 17(8); 1659-69. ©2018 AACR.


Asunto(s)
Daño del ADN/genética , Proteínas del Ojo/genética , Proteínas Tirosina Fosfatasas/genética , Animales , Humanos , Masculino , Ratones , Neovascularización Patológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA